系统抽样(总体个数较多)③分层抽样(总体中差异明显)
注意:在N个个体的总体中抽取出
个个体组成样本,每个个体被抽到的机会(概率)均为
。N
2、总体分布的估计:⑴一表二图:①频率分布表数据详实②频率分布直方图分布直观③频率分布折线图便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1。⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的药重复写。3、总体特征数的估计:⑴平均数:xx1x2x3x
;
取值为x1x2x
的频率分别为p1p2p
,则其平均数为x1p1x2p2x
p
;注意:频率分布表计算平均数要取组中值。⑵方差与标准差:一组样本数据x1x2x
方差:s2
1
i1
xi
2
x;
标准差:s
1
xi
i1
2
x
注:方差与标准差越小,说明样本数据越稳定。
平均数反映数据总体水平;方差与标准差反映数据的稳定水平。
⑶线性回归方程
①变量之间的两类关系:函数关系与相关关系;
②制作散点图,判断线性相关关系
③线性回归方程:ybxa(最小二乘法)
xiyi
xy
b
i1
i1
xi2
2
x
aybx
7
f注意:线性回归直线经过定点xy。
第三章:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果,用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点;
⑶随机事件A的概率:PAm0PA1;
2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点:①所有的基本事件只有有限个;②每个基本事件都是等可能发生。⑶古典概型概率计算公式:一次试验的等可能基本事件共有
个,事件A包含了其中的m个基本事件,则事件
A发生的概率PAm。
3、几何概型:⑴几何概型的特点:
①所有的基本事件是无限个;
②每个基本事件都是等可能发生。
⑵几何概型概率计算公式:
PA
d的测度D的测度
;
其中测度根据题目确定,一般为线段、角度、面积、体积等。
4、互斥事件:⑴不能同时发生的两个事件称为互斥事件;⑵如果事件A1A2A
任意两个都是互斥事件,则称事件A1A2A
彼此互斥。⑶如果事件A,B互斥,那么事件AB发生的概率,等于事件A,B发生的概率的和,即:PABPAPB⑷如果事件A1A2A
彼此互斥,则有:PA1A2A
PA1PA2PA
⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。
①事件A的r