全球旧事资料 分类
是验证相关性的。验证差异的主要有t检验和方差分析,验证相关性的主要有回归分析、因子分析和结构方程模型。通过课程的学习我基本知道了他们的区别和应用场景,如t检验适合两个变量之间的差异比较,而方差分析则在变量较多时使用,从而达到便捷的效果。
在学习方差分析时,我刚开始常常把因变量和自变量弄混淆,在分析的时候应分别送入哪个对应框中,如果反了的话会导致结果的不准确。接着,对LSD、Bo
ferro
i、Tukey、Scheffe等方法的使用不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较,宜用Bo
ferro
iLSD法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用Tukey法;其他情况宜用Scheffe法。因为经常混淆,所以这些都被我记录在PPT中,好让自己以后方便查看。还有,当时对方差齐性检验、多重比较检验的理解也存在困难,但经过小组讨论对他们也基本有了了解。当方差分析F检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。LSD即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验,最灵敏,但会较易犯假阳性的错误。在听别的小组讲述相关分析时,对于在绘制散点图时的横坐标和纵坐标的区分刚开始不太明白,但经过同学的讲授明白了横坐标是解释变量,纵坐标是被解释变量。在学习回归分析的过程中,对解释变量向前筛选、向后筛选、逐步帅选策略不能熟练掌握,特别是对向前向后筛选时到处的结果不会进行分析。在学习因子分析的时,刚开始对提取出来的因子的实际含义不清晰,但这些问题都都一一在讲授和之后的讨论中得到了解析,从而对于他们都算是有了大致的了解。
虽然整个学习过程经历了很多困难,但小组成员在一起,大家一起克服困难,集思广益,最后的结果还算是成功的,每个人对于自己的部分都很认真在准备希望能给大家讲的清楚明晰,这个学习的过程对我们都意义非凡。现在这门课
f要结束了,但对于SPSS的学习却没有,现有的知识感觉只是对他有个初步的了解,离熟练运用还有些距离,论文中的模型分析的结果还不能很快的看出,因此还需要不断地看书看文献运用。但这门课显然给我们打下了很好的基础,在这结束的时刻,我希望谢谢这些陪我一起走过这个历程的人,我的老师,小组的成员以及其他组的成员们,感谢你们同我一起成长。
r
好听全球资料 返回顶部