你能确定与之对应的课桌高度吗?设计这一问的主要目的,是检测学生对一次函数解析式的应用。②小林也测量了这套桌椅高度,可数据与小明的有些微偏差,你怎样理解?在实际问题中,测量结果是允许存在误差的,所以我想通过这一问,提高学生对数据的认识,能够用分析的眼光看待数据,必要时做适当修正。这时,再引入教材55页问题3,学生可以通过自主阅读,轻松掌握教材所呈现的思想方法。③小明想检测另一款桌椅是否具备同样特征,他该怎样做?这是个参与性很强的开放问题,每个学生都可以展开想像的翅膀,按照自己的想法进行设计。重点在于学习如何制定方案→收集数据→分析数据→得出结论,完善数学建模过程,树立学生应用数学、发展数学的意识。(5)作业:作业的设计同样需要尊重学生的个体差异,因此我安排了两种内容,争取使不同层次的学生都得到发展的机会。【必做内容】:
f在科学辅导读物上有一张这样的表格:摄氏温度℃华氏温度1050206830864010450122
你能确定摄氏温度(℃)和华氏温度()之间的函数关系吗?【选做内容】:已知某山区的平均气温与该山的海拔高度的关系见下表:
海拔高度(单位"米")平均气温(单位"℃)
022
100215
20021
300205
40020
......
如果某种植物适宜生长在18℃~20℃包含18℃也包含20℃山区问该植物适宜种植在海拔为多少米的山区【板书设计】:实践与探索问题1:(解答过程)问题2:(困惑)复习函数:表达式及图象特征小结后记:最后,我一点个人体会,这就是有效的数学学习活动不能单纯地依赖模仿与记忆。良好的数学思维习惯和应用数学的意识,才是学生真正需要的,也是教师应当花大力气去培养的。本人觉得这节课可以在很大程度上帮助学生摆脱纯演绎数学的模式,培养学生的数学应用意识,尽可能再现数学发现的基本过程,既挖掘了数学知识生的活内涵的,又把教学内容与生活现实有机地结合地起来。这节课是个尝试,有不当之处,欢迎各位领导专家批评指正,谢谢。学生探索待定系数法求表达式检验延伸拓展
fr