全球旧事资料 分类
开天教育在线
函数的奇偶性、周期性与对称性
1(2010山东)设fx为定义在R上的奇函数,当x≥0时,fx2x2xbb为常数,则f1(A3B1C1D3)

2已知函数fxax2bx3ab是定义域为a12a的偶函数,则ab的值是(A0B
13
C1
D1
3已知fx是以2为周期的偶函数,且当x01时,fxx1,则fx在12上的解析式________4定义在R上的函数fx的图象关于y轴对称,且f1xf1-x,当-1≤x≤0时,fx-则f86________一、函数的奇偶性1函数奇偶性的定义如果对于函数yfx定义域D内的任意实数a都有fxfx或fxfx那么函数yfx叫做奇或偶函数2函数奇偶性的性质(1)定义域关于原点对称;(2)偶函数的图象关于y轴对称,奇函数的图象关于原点对称;(3)fx为偶函数fxfx;(4)若奇函数fx的定义域包含0,则f003判断函数的奇偶性讨论函数的奇偶性的前提条件是函数的定义域关于原点对称,其定义域关于原点对称,可用下列方法判断其奇偶性:(1)定义法:fxfxfx为奇函数;fxfxfx为偶函数(2)图象法:fx的图象关于原点对称fx是奇函数;fx的图象关于y轴对称fx是偶函数(3)等价转化法:fxfx0,或
1x,2
fx1fx是奇函数;fx
fxfx0,或
fx1fx是偶函数fx
(4)运算法:设fx,gx的定义域分别是D1D2,那么在它们的公共定义域上:
1
f开天教育在线
奇奇奇,奇奇偶,偶偶偶,偶偶偶,奇偶奇二、函数的周期性
常见周期总结
(1)fxfxa,则Ta;fxafx则T2a;(2)fxfxab,或fxafxbfx0,ab为非0常数T2a;3fx1
1fx0,则fx的周期T3a;fxa
4fxafxfxa,则fx的周期T6a
三、对称性:1函数yfx的图象关于直线xa对称faxfaxf2axfxab函数yfx的图象关于直线x对称famxfbmxfabmxfmx2
中心对称:
ab对称yfx关于中心2byf2ax
1函数周期性的定义一般地,对于函数fx,若存在一个非零常数T,使得定义域内的任意x,都有fxTfx,那么函数fr
好听全球资料 返回顶部