2011年高考题型专题冲刺精讲(数学)专题四函数与导数
【命题特点】函数的观点和方法既贯穿了高中代数的全过程,又是学习高等数学的基础,是高考数学中极为重要的内容,纵观全国及各自主命题省市近三年的高考试题,函数与导数在选择、填空、解答三种题型中每年都有试题,分值26分左右,函数的解答题在文、理两卷中往往分别命制,这不仅是由教学内容要求的差异所决定的,也与文理科考生的思维水平差异有关。文科卷中函数和导数的解答题,其解析式只能选用多项式函数;而理科卷则可在指数函数、对数函数以及三角函数中选取。高考对导数的考查主要以工具的方式进行命题,充分与函数相结合其主要考点:(1)考查利用导数研究函数的性质(单调性、极值与最值);(2)考查原函数与导函数之间的关系;(3)考查利用导数与函数相结合的实际应用题从题型及考查难度上来看主要有以下几个特点:①以填空题、选择题考查导数的概念、求函数的导数、求单调区间、求函数的极值与最值;②与导数的几何意义相结合的函数综合题,利用导数求解函数的单调性或求单调区间、最值或极值,属于中档题;③利用导数求实际应用问题中最值,为中档偏难题复习建议:复习时,考生要“回归”课本,浓缩所学的知识,夯实基础,熟练掌握解题的通性、通法,复习建议:提高解题速度。同时,许多高考试题在教材中都有原型,即由教材中的例题、习题引申变化而来。因此,考生必须利用好课本,夯实基础知识。【试题常见设计形式】函数和导数的内容在高考试卷中所占的比重较大,考查时有一定的综合性,并与数学思想方法紧密结合,对数学思想方法进行深入的考查,这种综合地统揽各种知识、方法和能力,在函数的考查中得到了充分的体现,函数与导数解答题在文、理两卷中往往分别命制,这既是由教学内容要求的差异所决定的,也与文、理科考生的思维水平差异有关,文科卷中的解答题,其解析式一般选用多项式函数;理科卷则常在指数函数、对数函数以及三角函数中选取。高考对导数的考查主要以工具的方式进行命题,充分与函数相结合1利用导数研究函数的单调性、极值与最值问题;2考查以函数为载体的实际应用题,主要是首先建立所求量的目标函数,再利用导数进行求解突破方法技巧】【突破方法技巧】1.讨论函数的性质时,必须坚持定义域优先的原则对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响 2.运用函数的性质解题时,注意数形结r