全球旧事资料 分类
.75°C.85°D.95°1.思路分析:先分清一副三角尺,各个角的度数分别为多少,然后将各个角相加或相减即可得出答案.解:利用一副三角板可以画出75°角,用45°和30°的组合即可,故选:B.点评:此题主要考查了用三角板直接画特殊角,关键掌握用三角板画出的角的规律:都是15°的倍数.2.(2012济宁)如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()A.40°B.75°C.85°D.140°
2.分析:根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.解:如图:∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA45°,∴∠BAE∠DBA45°,∵∠EAC15°,∴∠BAC∠BAE∠EAC45°15°60°,又∵∠DBC80°,∴∠ABC80°45°35°,∴∠ACB180°∠ABC∠BAC180°60°35°85°.故选C.
f点评:本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.3.(2012日照)如图,DE∥AB,若∠ACD55°,则∠A等于()A.35°B.55°C.65°D.125°
3.分析:由DE∥AB,∠ACD55°,根据两直线平行,内错角相等,即可求得∠A的度数.解:∵DE∥AB,∠ACD55°,∴∠A∠ACD55°.故选B.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,内错角相等定理的应用.4.(2012临沂)如图,AB∥CD,DB⊥BC,∠140°,则∠2的度数是()A.40°B.50°C.60°D.140°
4.分析:先根据平行线的性质求出∠3的度数,再根据直角三角形的性质即可得出∠2的度数.解:∵AB∥CD,DB⊥BC,∠140°,∴∠3∠140°,∵DB⊥BC,∴∠290°∠390°40°50°.故选B.
点评:本题考查的是平行线的性质及直角三角形的性质,用到的知识点为:两直线平行,同位角相等.5.(2012济南)如图,直线a∥b,直线c与a,b相交,∠165°,则∠2()
fA.115°B.65°C.35°D.25°
5.分析:由直线a∥b,∠165°,根据两直线平行,同位角相等,即可求得∠3的度数,又由对顶角相等,即可求得答案.解:∵直线a∥b,∠165°,∴∠3∠165°,∴∠2∠365°.故选B.
点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等定理的应用,注意数形结合思想的应用.6.(2012济南)下列命题是真命题的是()A.对角线相等的四边形是矩形B.一组邻边相等的四边形是菱形C.四个角是直角的四边形是正方形D.对角线相等的梯形是等腰梯形6.分析:根据矩形、菱形的判定方法以及定义即可作出判断r
好听全球资料 返回顶部