,
。将p
,即px向x轴投影就得到x;向y轴投影就得到xy;向z轴投影就得到xz;所以
将应力矢量分量表达式代入上述各式,并分别考虑y,z方向,则可以得到转轴公式
f注意到
xyyx
yzzy
xzzx。
用张量形式描述,则上述公式可以写作
应力变换公式表明:当坐标轴作转轴变换时,应力分量遵循张量的变换规律。坐标轴旋转后,应力分量的九个分量均有改变,但是作为一个整体所描述的应力状态是不会发生变化的。应力张量为二阶对称张量,仅有六个独立分量。新坐标系下的六个应力分量可通过原坐标系的应力分量确定。因此,应力张量的六个应力分量就确定了一点的应力状态。对于平面问题,如Ox轴与Ox成角。则新旧坐标系有如下关系:
f根据转轴公式,可得
上述公式即材料力学中常用的应力变换公式。应该注意的问题是:材料力学是根据变形效应定义应力分量的,而弹性力学是根据坐标轴定义应力分量的符号的。因此对于正应力二者符号定义结果没有差别,但是对于切应力符号定义是不同的。例如对于两个相互垂直的微分面上的切应力,根据弹性力学定义,符号是相同的,而根据材料力学定义,符号是相反的。
§27主应力和应力不变量
学习思路应力状态的确定,不仅需要描述一点各个截面的应力变化规律,而且需要确定最大正应力和切应力,以及作用平面方位。本节讨论应力状态的的重要概念-主平面和主应力。主平面是指切应力为零的平面;主平面法线方向称为应力主轴;主平面的正应力称为主应力。主平面和主应力是描述一点应力状态的重要参数,关系弹性体的强度。根据主应力和应力主轴的定义,可以建立其求解方程-应力状态特征方程。对于应力主轴,在主应力求解后,再次应用齐次方程组和方向余弦特性可以得到。主应力特征方程的系数具有不变性、实数性和正交性。因此称为应力不变量。学习要点:1主平面与主应力;3应力状态特征方程;2l,m,
的齐次线性方程组;4主应力性质;5正交性证明。
f应力状态的确定,不仅需要描述一点各个截面的应力变化规律,而且需要确定最大正应力和切应力,以及作用平面方位。物体内一点的应力分量是随坐标系的旋转而改变的,那么,对于这个确定点,是否可以找到这样一个坐标系,在这个坐标系下,该点只有正应力分量,而切应力分量为零。也就是说:对于物体内某点,是否能找到三个相互垂直的微分面,面上只有正应力而没有切应力。答案是肯定的,对于任何应力状态r