第二章应力状态分析
一内容介绍弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。二重点1应力状态的定义:应力矢量;正应力与切应力;应力分量;2平衡微分方程与切应力互等定理;3面力边界条件;4应力分量的转轴公式;5应力状态特征方程和应力不变量;
§25面力边界条件
学习思路在弹性体内部,应力分量必须与体力满足平衡微分方程;在弹性体的表面,应力分量必须与表面力满足面力边界条件,以维持弹性体表面的平衡。
f面力边界条件的推导时,参考了应力矢量与应力分量关系表达式。只要注意到物体边界任意一点的微分四面体单元表面作用应力分量和面力之间的关系就可以得到。面力边界条件描述弹性体表面的平衡,而平衡微分方程描述物体内部的平衡。当然,对于弹性体,这仅是静力学可能的平衡,还不是弹性体实际存在的平衡。面力边界条件确定的是弹性体表面外力与弹性体内部趋近于边界的应力分量的关系。学习要点:1面力边界条件。
物体在外力作用下处于平衡状态,不仅整体,而且任意部分都是平衡的。在弹性体内部,应力分量必须与体力满足平衡微分方程;在弹性体的表面,应力分量须与表面力满足面力边界条件,以满足弹性体表面的平衡。考虑物体表面任一微分四面体的平衡,如图所示。由于物体表面受到表面力,如压力和接触力等的作用,设单位面积上的面力分量为Fsx、Fsy和Fsz,物体外表面法线
的方向余弦为l,m,
。参考应力矢量与应力分量的关系,可得
用张量符号可以表示为
上述公式是弹性体表面微分单元体保持平衡的必要条r