程而确定。求解中可以在指定点上精确地满足,也可以在最小均方差的意义上满足边界条件。这样得到的级致解一般能精确满足域内的给定条件,并且近似地满足其余边界上的条件。在裂纹问题的边界配置法中有两种基本的应力函数可供选择,即Williams的应力函数和Muskhelishyili的复变应力函数,从发展过程看,前者一般用在边缘裂纹问题中,后者可用于内埋裂纹与边缘裂纹的情况。边界配置法的求解精度较高。它的不足之处是:对于不同类型的裂纹问题,应力函数必须改变。而建立这些新的应力函数的工作量将是很大的,对于较复杂的几何与载荷情况,应力函数所应满足的边界条件很难确定,另外,解的收敛性还没有得到严格的证明。
24边界力法
边界力法通过利用无限体中有限数量的集中力和集中力矩的叠加来求解边值问题。这种解法以无限体中集中力和集中力矩的弹性解为基本解,对于不含裂纹的板,基本解取Muskhelishyili的解,对于含裂纹的板,则取Erdoga
的解作为基本解。由于Erdoga
的解精确地满足了裂纹面应力为零的条件,所以裂纹面就不再需要作为边界的一一部分加以考虑。因为基本解满足了物体内部的所有弹性力学方程,余下所需满足的条件只是边界条件。这些边界条件则是通过在相应于真实裂纹体的假想边界上施加一系列的集中力和集中力矩来满足的,先把假想的边界离散化为一组线段,在每一段的中心,在离开假想边界处加上一对集中力和力矩,这些力和力矩的值可通过近似
f地满足边界条件得以确定。与其他数值方法相比,边界力法有其明显的优点。由于这一方法已精确地满足了裂纹面上的边界条件,所以它不需要像边界元法那样把裂纹面视为边界的一部分。另外,它也克服了边界配位法中所需要的对每一类裂纹问题都要建立新的应力函数的缺点。这种解法只要较小的自由度就能达到相当高的精度。因此它在求解几何形体复杂的裂纹向题中有着明显的优点,但在处理复杂载荷的能力方面,则远非如权函数法那样灵活。
25权函数法
权函数法是一种求解在任意受载条件下裂纹应力强度因子的高效方法。这种解法的高效性在于它把影响应力强度因子的两个因素,即载荷与几何,作了变量分离。权函数仅反映了裂纹体的几何特性,它可以根据一种受载情况下的已知解确定。一经导出,它就能被用来不受限制地求解任意加载条件下的k值,求解中只需作一个积分运算:
aK0maxxdx
式中max为权函数,x为无裂纹体中假想裂纹处的应力分布。除了灵活通用,简单经济r