第七讲
化归化归解方程组的基本思想
初中阶段已学过的方程组有:二元一次方程组、三元一次方程组、二元二次方程组.尽管具体到每类方程组的解法不全相同,但纵有千变万化,而万变不离其宗:化归是解方程组的基本思想,降次与消元是化归的主要途径,因式分解、换元是降次的常用方法,代人法、加减法是消元的两种主要手段.解一些特殊方程组如未知数系数较大,未知数个数较多等,需要在整体分析方程组特点基础上,灵活运用一些技巧与方法,常用的技巧与方法有迭加、迭乘、换元、配方、取倒等.注:转化与化归是解方程组的基本思想,常见形式有:分式方程整式化无理方程有理化高次方程低次化多元方程一元化通过恰当的转化,化归目的明确,复杂的方程组就会变为我们熟悉的、简单的方程组.例题求解】【例题求解】
xyxy8【例1】已知正实数x、y、z满足yzyz15,则xyzxyzzxzx35
.
思路点拨由abab1a1b1想到从分解因式入手,还需整体考虑.
【例2】方程组
xzyz23的正整数解的组数是(xyyz63
)
A.4B.3C2D.1思路点拨直接消元降次解三元二次方程组较困难,从分析常数项的特征入手.
【例3】1
解下列方程组:(2)
xx13x5y144x24x5y24
xyxy1322xy29
3x13y123xy26
思路点拨对于1,先求出整体xy、xy的值,对于2,视x2x、3x5y为整体,可得到x2x3x5y、x2x3x5y的值;对于3设3x1a,3y1b,用换元法解.
f【例4】已知a、b、c三数满足方程组
ab8
2
abc82c48
,试求方程bx2cxa0的根.
思路点拨先构造以a、b为两根的一元二次方程,从判别式入手,突破c的值.
注:方程与方程组在一定的条件下可相互转化,借助配方法、利用非负数性质是促使转化的常用工具,一个含多元的方程,往往蕴含着方程组.【例5】已知方程组
b11,x1x2xx1xx2y24x有两个实数解为和且x1x2≠0,x1≠x2,设y2xayy1yy2
1求a的取值范围;2试用关于a的代数式表示出b;3是否存在b3的a的值若存在,就求出所有这样的a的值;若不存在,请说明理由.思路点拨代人消元,得到关于x的一元二次方程,综合运用根的判别式、韦达定理等知识求解,解题中注意隐含条件的制约,方能准确求出a的取值范围.
r