涉及部门内部的多个实体,如市场部门中涉及的实体有:客户、客户经理、产品、订单、销售业绩,以及城市信息等等,这些实体都有自己的属性。
f(2)数据库物理设计数据库在物理设备上的存储结构与存取方法称为数据库的物理结构,优秀的物理结构设计能使数据库上运行的各种事务响应时间小、存储空间利用率高、事务吞吐率大。优秀的物理设计最重要的是有一个高效率的存取方法,常见的存取方法有索引存取方法、HASH存取方法等,存取方法本文不再详细叙述。12数据挖掘方法数据挖掘从本质上说是一种新的商业信息处理技术。数据挖掘技术把人们对数据的应用,从低层次的联机查询操作,提高到决策支持、分析预测等更高级应用上。它通过对这些数据进行微观、中观乃至宏观的统计分析、综合和推理,发现数据的关联性、未来趋势以及一般性的概括知识等。数据挖掘作为一门数据处理的新兴技术,它具有的特征是处理海量数据,并且即使这些数据是不完全的、冗余的、随机的、复杂数据结构的、维数大的,都可以通过数据清洗来选择有用数据,建立知识模型。数据挖掘是多学科交叉,涉及计算机科学、统计学、数学等学科的技术。(1)联机分析挖掘OLAMOLAM(O
Li
eA
alyticalMi
i
g)联机分析挖掘的概念是OLAP(O
li
eA
alyticalProcessi
g,联机分析处理)的发展。用户的决策分析需要对数据库中的数据进行大量的分析计算才能得到结果,而普通的数据处理系统对数据库的简单查询,已经不能满足决策者提出的需求,因此就出现了多维数据库和多维分析的概念,即OLAP。OLAP是联机交互式数据分析一个良好的框架,但是它只能处理数值型数据,对决策支持系统来说是一个较大的局限性。OLAM是在数据立方体上进行多层次的数据挖掘,OLAM分成若干个抽象层,每个抽象层都有各自的抽象任务。主要包括数据集层:它包括相关的数据库和数据仓库等,同时也是OLAM的数据源,通过数据清洗和集成,生成结构化的便于分析的数据环境。数据立方层:形成支持OLAP和OLDM的多维数据集,它是相关数据的综合和多维化处理,主要由数据立方和元数据集组成。OLAP和OLDM应用层:这一层接受数据请求,通过访问多维数据集和元数据,完成数据挖掘和分析。
f用户接口层:承担用户请求的理解以及挖掘结果的解释和表达等。(2)数据挖掘过程数据库中发现知识是一个有明确学习目标的需要多次反复的过程,因此数据挖掘是一个目标和
数据不断优化的过程。a问题定义和数据抽取对于多异构的数据源,需要根据源数据的结构特r