全球旧事资料 分类
:由椭圆的性质得OAOBOEOF,∴uuuuuuuurrruuuuurruuuurAEOEOAOFOBBFuuuuuurruuur∴AEgBFAE2又A是椭圆M的焦点.点E在椭圆M上uuuruuuruuuruuuuuurrac≤AE≤ac,2≤AE≤6,36≤AE2≤4,AEgBF的即∴取值范围是364
18.解:(Ⅰ)当∠BOD
SODAESOAE
1331E632222131131SOAD×2××2×;22222
时,∠BOE,即D
π
π
(Ⅱ)∵点D,E都从点B同时出发沿单位圆O逆时针运动,且点E的角速度是点D的角速度的2倍.∴∠BOE2∠BOD,∠BODθ∠BOE2θ,0≤θ2π由三角函数的定义可知,点Dcosθsi
θEcos2θsi

fθcos2θcosθ2si
2θsi
θ2
22cos2θcosθsi
2θsi
θ21cosθ
2si
由0≤
D
θ
2≤
,0≤θ2π,0≤∵∴
θ
2
π,si

θ
2
≥0,fθ2si

θ
2
A
N
π得:πθ2π2222∴fθ的单调递增区间是0π,单调递减区间是π2π.
得:0≤θ≤π,由19.解:(Ⅰ)证明:∵四边形DCEF由四边形ABEF旋转所得,∴ABCD
8
θ
π
π
θ
MO
C
f且AB∥EF,CD∥EF.由平行公理得AB∥DC.∴四边形ABCD为平行四边形.(Ⅱ)证明:过F作FM⊥AB于M并设旋转后M的对应点为N连FNMN.则CD⊥FN且AMDN.QAB∥CD∴AB⊥FN,QMF∩NFF∴AB⊥面MNFQMN面MNF∴AB⊥MN,QAB∥CD且AMDN∴四边形AMND为平行四边形.∴MN∥AD.则AB⊥AD.∵AB∥EF,∴EF⊥AD.(Ⅲ)QEFABAB面ABCDEF面ABCD,∴EF面ABCD.∴E到面ABCD的距离等于F到面ABCD的距离.在矩形ABCD中,AODCOBSAODSCOB.∴VEBOCVFAOD.
DG
QVEBOCVOEBC
VFAODVOFAD.∴VOEBCVOFAD.
A
设G为AD中点,在EF上取点M使MF
1AB连OM、OG2
O
1AB.QEFAB.∴EFOG.2则四边形MFGO为平行四边形.∴MOFG.QFG面FAD,MO面FAD,∴MO面FAD.则O到面FAD的距离等于M到面FAD的距离.∴VMFADVOFAD.∴VMFADVOEBC.120.解:(Ⅰ)∵fxl
xax2x,∴fx2x1xaB∵函数fxl
xax2x在点x0处取得极值,∴f00,11即当x0时2x10,∴10,则得a1xaa552(Ⅱ)∵fxxb∴l
x1xxxb,∴223l
x1x2xb23令hxl
x1x2xx1则2134x5x1hxr
好听全球资料 返回顶部