什么是中国剩余定理?
f剩余定理详细解法
中国数学史书上记载:在两千多年前的我国古代算书《孙子算经》中,有这样一个问题及其解法:今有物不知其数,三三数之剩二;五五数之剩三:七七数之剩二。问物几何?
意思是说:现在有一堆东西,不知道它的数量,如果三个三个的数最后剩二个,如果五个五个的数最后剩三个,如果七个七个的数最后剩二个,问这堆东西有多少个?你知道这个数目吗?
《孙子算经》这道著名的数学题是我国古代数学思想“大衍求一术”的具体体现,针对这道题给出的解法是:N70×2+21×3+15×22×105=23
如此巧妙的解法的关键是数字70、21和15的选择:70是可以被5、7整除且被3除余1的最小正整数,当70×2时被3除余221是可以被3、7整除且被5除余1的最小正整数,当21×3时被5除余315是可以被3、5整除且被7除余1的最小正整数,当15×2时被7除余2通过这种构造方法得到的N就可以满足题目的要求而减去2×105后得到的是满足这一条件的最小正整数。
韩信点兵又称为中国剩余定理
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?
首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
中国有一本数学古书「孙子算经」也有类似的问题:
「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」答曰:「二十三」术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」
孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chi
eseRemai
derTheorem)在近代抽象代数学中占有一席非常重要的地位。
f中国剩余定理例题讲解1中国剩余定理例题讲解2
f一道中国剩余定理类型题(附两种解法)
一个三位数除以9余7,除以5余2,除以4余3,这样的三位数共有几个r