高考数学应用题的解法
2007年全国数学考试大纲(课标版)中,能力要求中指出,能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识,其中对实践能力的界定是:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明实践能力是将客观事物数学化的能力主要过程是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决2007年山东数学考试说明对实践能力的界定是:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题,并能用数学语言正确地表述、说明.对实践能力的考查主要采用解决应用问题的形式命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际,考虑学生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平数学应用性问题是历年高考命题的主要题型之一高考中一般命制一道解答题和两道选择填空题由于这类题目文字叙述长,数学背景陌生,涉及面又广,对相当一部分学生来讲,连题目都不“敢”去看了,心理失衡,导致在阅读和理解方面存在着一定困难解答这类问题的要害是消除心理和语言障碍,深刻理解题意做好文字语言向数学的符号语言的翻译转化自信,冷静地去读完题目,保持冷静,认真对待,不能随意放弃读题是翻译的基础,读题时要抓住题目中的关键字、词、句,弄清题中的已知事项,初步了解题目中讲的是什么事情,要求的结果是什么。在读题的基础上,要能复述题目中的要点,深思题意,很多情况下,可将应用题翻译成图表形式,形象鲜明地表现出题中各数量之间的关系,将文字语言、符号语言、图表语言转化成数学语言,这个过程其实就是建模。函数数列不等式,排列组合、概率是较为常见的模型而三角立几解几等模型也时有出现一般来说,可采用下列策略建立数学模型:(1)双向推理列式,利用已知条件顺向推理,运用所求结果进行逆向搜索;(2)借助常用模型直接列式,平均增长率的问题可建立指、对数或方程模型,行程、工程、浓度问题可以建立方程(组)或不等式模型,拱桥、炮弹发射、卫星制造问题可建立二次模型,测r