、数量关系和变化规律。这一条强调了符号表示的作用。知道使用符号可以进行运算和推理,得到的结论具有一般性。这一条,强调了“符号”的一般性特征。因为用数进行的所有运算都是个案,而数学要研究一般问题,一般问题需要通过符
f号来表示、运算和推理。因此一方面符号可以像数一样进行运算和推理,另外通过符号运算和推理得到的结论是具有一般性的。4空间观念除了将《实验稿》中最后一条独立为另一个核心概念“几何直观”外,《标准》对于“空间观念”的阐述基本保持了原来的说法。5几何直观几何直观是《标准》中新增的核心概念,主要是指“利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用”。6数据分析观念《标准》将“统计观念”更名为“数据分析观念”,点明了统计的核心是数据分析。进一步,“数据分析观念”更加突出了统计与概率独特的思维方法:体会数据中蕴涵着信息;根据问题的背景选择合适的方法;通过数据分析体验随机性。7推理能力《标准》和《实验稿》一样,强调了“获得数学猜想证明猜想”的全过程,以及在这个过程中的合情推理和演绎推理。需要特别指出的是,推理能力的发展应贯穿于整个数学学习过程中。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。8模型思想《标准》首先说明了模型思想的价值,即建立了数学与外部世界的联系。小学阶段有两个典型的模型“路程=速度×时间”、“总价=单价×数量”,有了这些模型,就可以建立方程等去阐述现实世界中的“故事”,就可以
f帮助我们去解决问题。《标准》还进一步阐述了建立和求解模型的过程,这一过
程的步骤可用如下框图来体现:
一、关于“图形与几何”的解析讲空间与图形改为图形与几何,首先点明了这部分内容的研究对象图形,既包括立体图形也包括平面图形。同时,《标准》分为了“图形的认识”、“测量”、“图形的运动”、“图形与位置”等四个线索,实际上是从不同角度刻画图形,包括图形的形状、大小、运动和位置。同时,这四个线索也体现了研究几何的几种方法:综合推理、
f度量、变换和坐标。在运用多种方法研究的过程中形成了概念、性质等体系,也就是“几何”的内容。简单说,图形是几何的研究对象。对于图形与几何,《标r