全球旧事资料 分类
。第二,认真地研究学生。学生在面对一个问题时他们是如何思考的,其中是否存在着经验。第三,探索经验形成的途径。一般说来,要经历:“经历、内化、概括、迁移”的过程。首先,需要经历,无论是生活中的经历、还是学习活动中的经历,对于学生基本经验的积累是必须的。但仅仅是经历是不够的,还需要学生在活动中充分调动数学思维,将活动所得不断内化和概括,最终迁移到其他的活动和学习中。由此可见,数学活动经验既是数学学习的产物,也是学生进一步认识和实践的基础。这里反思和迁移是重要的。比如,我在国外教材中看到过这样的问题:”今天你学习的方法在以前哪里用过?今后可能用到什么地方“。这样的问题就是在帮助学生实现迁移。下面,谈谈基本思想。在课程标准解读中,提出了三个基本思想:抽象、推理、模型。人们通过抽象,从客观世界中得到数学的概念和法则,建立了数学学科;通过推理,进一步得到更多的结论,促进数学内部的发展;通过建模,把数学应用到客观世界中,沟通了数学与外部世界的桥梁。比如,由数量抽象到数,由数量关系抽象到方程、函数(如正反比例)等;通过推理计算可以求解方程;有了方程等模型,就可以把数学应用到客观世界中。笔者认为基本思想这一层面是数学思想的最高层面。处于下一层次的还有与具体内容紧密结合的具体思想,如数形结合思想、化归思想、分类思想、方程思想、函数思想等。在数学思想之下统领的还有一些具体的方法。对于教师,我认为首先对数学基本思想要熟悉,心里有这根弦。作为研究,可以研究与具体内容紧密结合的具体思想,如数形结合思想、函数思想等。限于
f篇幅和时间,这里不好列举大的案例。感兴趣的老师,我最近要在东北师范大学出版社出版一本对于课程标准的解读,上面有比较丰富的一线老师们的案例。下面说说发现和提出问题、分析和解决问题。这里关键要鼓励学生发现和提出问题,比如有的地方进行的“单元情境+提出问题”的试验。对于一个单元,设计一个大的情境,鼓励学生根据大情境从不同角度提出问题,然后根据情况选择其中一些问题进行讨论,在分析和解决问题中学习新的内容。有的老师在学生学习之后,鼓励学生提出一些新的可以研究的问题,这也很好。比如,在一次小数的认识学习后,我就鼓励身边的小组学生提出想要进一步思考的问题。学生纷纷提出了“小数点的作用是什么”“小数为什么要叫‘小’数”“不是十进分数的分数能否化成小数”“小数和自然数r
好听全球资料 返回顶部