全球旧事资料 分类
由于遗传算法具有全局并行搜索、简单通用、鲁棒性强等优点,使得遗传算法广泛地应用于计算机科学、自动控制、人工智能、工程设计、制造业、生物工程和社会科学等领域。针对遗传算法的一些问题,还有一些问题需要进一步的探究,将大大促进遗传算法理论和应用的发展,遗传算法必将在智能计算领域中展现出更加光明的前景。
三、遗传算法的特点
遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机搜索算法。它与传统的算法不同,大多数古典的优化算法是基于一个单一的度量函数(评估函数)的梯度和较高次统计,以产生一个确定性的试验解序列;遗传算法不依赖梯度信息,而是通过模拟自然进化进程来搜索最优解,它利用某种编码技术,作用于称为染色体的数字串,模拟由这些串组成的群体的进化过程。遗传算法通过有组织的、随机的信息交换来重新组合那些适应性好的串,生成新的串的群体。遗传算法有以下优点:(1)对可行解表示的广泛性。遗传算法的处理对象不是参数本身,而是针对那些通过参数集进行编码的基因个体,此编码操作使得遗传算法可以直接对结构对象进行操作。所谓结构对象,泛指集合、序列、矩阵、树、链、表等各种一维或二维甚至多维结构形式的对象。这一特点使得遗传算法具有广泛的应用领域。比如通过对连接矩阵的操作,遗传算法可用来对神经网络或自动机的结构或参数加以优化;通过对集合的操作,遗传算法可实现对规则集合和知识库的精炼而达到高质量的机器学习目的;通过对树结构的操作,用遗传算法可得到用于分类的最佳决策树;通过对任务序列的操作,遗传算法可用于任务规划,而通过对操作序列的处理,可自动构造顺序控制系统。(2)群体搜索特性。许多传统的搜索方法都是单点搜索,这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的极值点。相反,遗传算法采用的是同时处理群体中多个个体的方法,即同时对搜索空间中的多个解进行评估。这一特点使遗传算法具有较好的全局搜索性能,也使得算法本身易于并行化。
f(3)不需要辅助信息。遗传算法仅用适应度函数来的数值来评估基因个体,并在此基础上尽心遗传操作。更重要的是,遗传算法的适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。对适应度函数的唯一要求是,编码必须与可行解空间对应,不能有死码。由于限制条件的缩小,使得遗传算法的应用范围大大扩展。(4)内在启发式随机搜索特性。遗传算法不是采用确定性规r
好听全球资料 返回顶部