版权所有:21教育】解答:解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长152202=25(尺).故答案为:25点评:本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明算步骤.)19.(本小题满分9分)今年我市把男生“引体向上”项目纳入学业水平体育考试内容.考试前某校为了解该项目的整体水平,从九年级220名男生中,随机抽取20名进行“引体向上”测试成绩(单位:个)如下:91231318884■,12131298121318131210其中有一数据被污损,统计员只记得113是这组样本数据的平均数.(1)求该组样本数据中被污损的数据和这组数据的极差;(2)请补充完整下面的频数、频率分布表和频数分布直方图;(3)估计在学业水平体育考试中该校九年级有多少名男生能完成11个以上(包含11个)“引体向上”?
考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:根据平均数即可求得被污损的数,求出极差,进一步可将频率分布表、频数分布直方图补充完整;再利用总人数乘以对应的比例即可求解第三问.解答:(1)设被污损的数据为x,由题意知:
34839210125134182x113x
根据极差的定义,可得该组数据的极差是19-3=16.
解得:x=19
(2)由样本数据知,测试成绩在6~10个的有6名,该组频数为6,相应频率是绩在11~15个的有9名,该组频数为9,相应频率是
6=o30;20
测试成
9=045.20
补全的频数、频率分布表和频数分布直方图如下所示:
(3)由频率分布表可知,能完成_11个以上的是后两组,045+015×100=60%,由此估计在学业水
f平体育考试中能完成11个以上“引体向上’的男生数是220×60=132(名)点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(本小题满分10分)如图,在梯形ABCD中,AD∥BC,∠B=900,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.考点:全等三角形、直角三角形、勾股定理;直线与圆的位置关系.分析:(1)连接OE证明Rt△OAD≌Rt△OED可得∠AOD=r