1abmab12m2BMBCBM
BC
R,即:
11
a1b
ab1414,441
121313综上:1214OMab。777714
OC1aa4OCOM4OCOB,4CMB三点共线,41;1ODbb2ODOMOA2OD,2AMD三点共线,21;
【另解】设OMabR,
141137OMab综上:77213711【补例2】如图所示,OACB中,BDBCOD与AB交于点E,求证:BEBA。341DB【证明】方法一:设E1是线段BA上一点,且BE1BA。4E设OAaOBb,则:111BDa,ODba,BAab,BE1ab,OA3341131OE1OBBE1baba3bba,444331OE1ODOE1D三点共线,E与E1重合,BEBA。441方法二:设OAaOBb,则:BAab,BDa,BOb3设BEab,BEBABEmBAmR,
∥
∥
C
mabmab,m
1BDaBOba3BDbBOBE3BDBO,3
第5页共9页
∥
f高2015级教案
必修4
第二章
平面向量
撰稿人:王海红
又
OED三点共线,31,
14综上:,3114111111BEababBABEBABEBA。4444441【另解】:设OAaOBb,则:BAab,BDa,3设BEab,
BEBABEmBAmR,
mabmab,m
∥
1OEOBBEbaba1bODOBBDba,3又OED三点共线,OEODOE
OD
R,
1,a1b
ba331,31
14综上:,3114111111BEababBABEBAr