,使得m
;(4)对于任意的a,存在不相等的实数x1x2,使得m
。其中的真命题有(写出所有真命题的序号)。
三解答题16设数列a
的前
项和S
2a
a3,且a1a21a3成等差数列(1)求数列a
的通项公式;
f(2)记数列
11成立的
的最小值。的前
项和T
,求得T
11000a
17某市AB两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队(1)求A中学至少有1名学生入选代表队的概率(2)某场比赛前。从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望
18一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N(1请将字母FGH标记在正方体相应的顶点处(不需说明理由)(2)证明:直线MN平面BDH(3)求二面角AEGM的余弦值
19如图,ABCD为平面四边形ABCD的四个内角(1)证明:ta
A1cosA2si
A
o
(2)若AC180AB6BC3CD4AD5求
ta
ABCDta
ta
ta
的值。2222
f20如图,椭圆E:
x2y22,过点P(01)的动直线l与椭21ab0的离心率是2ab2
圆相交于A,B两点,当直线l平行与x轴时,直线l被椭圆E截得的线段长为221求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得若存在,求出点Q的坐标;若不存在,请说明理由。
QAPA恒成立?QBPB
21已知函数fx2xal
xx2ax2aa其中a0
22
(1)设gx是fx的导函数,讨论gx的单调性;(2)证明:存在
a01使得fx0在区间1内恒成立,且fx0在1内有唯一解
ffr