小学数学奥数基础教程六年级第28讲
本教程共30讲
运筹学初步(二)本讲主要研究分配工作问题。实际工作中经常会碰到分配工作的问题。由于工作任务的性质不同,每个人的工作能力不同,因而完成这些任务所需的时间和花费的代价也不同。我们希望通过合理分配工作,使所用时间最少或花费代价最小。例1甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服。两厂合并后,每月(按30天计算)最多能生产多少套衣服?分析与解:应让善于生产上衣或裤子的厂充分发挥特长。甲厂生产上衣和裤子的时间比为8∶7,乙厂为2∶3,可见甲厂善于生产裤子,乙厂善于生产上衣。因为甲厂30天可生产裤子448÷14×30=960(条),乙厂30天可生产上衣720÷12×301800(件),960<1800,所以甲厂应专门生产裤子,剩下的衣裤由乙厂生产。设乙厂用x天生产裤子,用(30x)天生产上衣。由甲、乙两厂生产的上衣与裤子一样多,可得方程960+720÷18×x720÷12×(30x),960+40x=180060x,100x=840,x84(天)。两厂合并后每月最多可生产衣服960+40×84=1296(套)。例2某县农机厂金工车间共有77个工人。已知每天每个工人平均可加工甲种部件5个,或乙种部件4个,或丙种部件3个。3个甲种部件、每1个乙种部件和9个丙种部件恰好配成一套。分别安排多少人加工甲、问:乙、丙三种部件时,才能使生产出来的甲、乙、丙三种部件恰好都配套?
f分析与解:如果采用直接假设,那么就要用三个字母分别代替加工甲、乙、丙三种部件的人数,这已经超出了我们的知识范围。由题目条件看出,每套成品中,甲、乙、丙三种部件的件数之比是3∶1∶9,因为是配套生产,所以生产出的甲、乙、丙三种部件的数量之比也应是3∶1∶9。设每天加工乙种部件x个,则加工甲种部件3x个,丙种部件9x个。从而
加工甲、乙、丙三种部件应分别安排12人、5人和60人。例3有4辆汽车要派往五个地点运送货物,右图○中的数字分别表示五个地点完成任务需要的装卸工人数,五个地点共需装卸工20人。如果有些装卸工可以跟车走,那么应如何安排跟车人数及各点的装卸工人数,使完成任务所用的装卸工总人数最少?
f分析与解:可用试探法。因为五个地点中需装卸工最多的是5个人,所以如果每辆车跟5个工人,那么每辆车到达任何一个地点,都能正常进行装卸。由此得到,跟车人数的r