全球旧事资料 分类
实验一
一、目的
用有限差分法解静电场边值问题
1.掌握有限差分法的原理与计算步骤;2.理解并掌握求解差分方程组的超松弛迭代法,分析加速收敛因子的作用;3.学会用有限差分法解简单的二维静电场边值问题,并编制计算程序。二、方法原理有限差分法是数值计算中应用得最早而又相当简单、直观的一种方法。应用有限差分法通常所采取的步骤是:⑴采用一定的网格分割方式离散化场域。⑵进行差分离散化处理。用离散的、只含有限个未知数的差分方程组,来近似代替场域内具有连续变量的偏微分方程以及边界上的边界条件(也包括场域内不同媒质分界面上的衔接条件)。⑶结合选定的代数方程组的解法,编制计算机程序,求解由上面所得对应于待求边值问题的差分方程组,所得解答即为该边值问题的数值解。现在,以静电场边值问题
220x2y2fsL在D中12
为例,说明有限差分法的应用。fs为边界点s的点函数,二位场域D和边界L示于图511中。
yLDhh03204x1
图511
有限差分的网格分割
1.离散化场域应用有限差分法时,首先需从网格划分着手决定离散点的分布方式。通常采用完全有规律的方式,这样在每个离散点上可得出相同形式的差分方程,有效地提高解题速度。如图511所示,现采用分别与x,y轴平行的等距(步距为h)网格线把场域D分割成足够多的正方形网格。各个正方形的顶点(也即网格线的交点)称为网格的结点。这样,对于场域内典型的内结点0,它与周围相邻的结点1、2、3和4构成一个所谓对称的星形。2.差分格式造好网格后,需把上述静电场边值问题中的拉普拉斯方程(1)式离散化。设结点0上的电位值为0。结点1、2、3和4上的电位值相应为1、2、3和4,
word文档可自由复制编辑
f则基于差分原理的应用,拉普拉斯方程(1)式在结点0处可近似表达为1234410(3)这就是规则正方形网格内某点的电位所满足的拉普拉斯方程的差分格式,或差分方程。对于场域内的每一个结点,关系式(3)式都成立,都可以列出一个相同形式的差分方程。但是,对于近邻边界的结点,其边界不一定正好落在正方形网格的结点上,而可能如图512所示。其中1、2为边界线上的结点,p、q为小于1的正数。仿上所述,可推得对这些近邻边界结点的拉普拉斯方程的差分格式为
1
p1p

2
q1q

3
1p

4
1q

1100pq
(4)
式中:1和2分别是给定边界r
好听全球资料 返回顶部