全球旧事资料 分类
:此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理
例2ABC中,c6A450a2求b和BC
解:acsi
Ccsi
A6si
4503
si
Asi
C
a
2
2
0C180C600或1200
当C600时,B750bcsi
B6si
75031,si
Csi
600
当C1200时,B150bcsi
B6si
15031si
Csi
600
b31B750C600或b31B150C1200练习:P412题例3在ABC中,b3B600c1求a和AC
2
f解:∵bcsi
Ccsi
B1si
6001
si
Bsi
C
b
3
2
bcB600CBC为锐角,C300B900
∴ab2c22【变式】ABC中,a2A1350b3求B四、小结:
五、课后作业
在△ABC中,1新疆王新敞
a

b

c
k则k为
2A

奎屯
si
Asi
Bsi
C
A2R新疆王新敞奎屯
BR新疆王新敞奎屯
C4R新疆王新敞奎屯
D新疆王新敞
1
R
R
为△ABC
外接圆半径
奎屯
2
2新疆王新敞
在ABC中,已知角B45,c2
2b4
3,则角A的值是
奎屯
3
A15
B75
C105
D75或15
3、在△ABC中若A30B60则abc132
4、在ABC中,若B60,b76a14,则A

5、在△ABC中,AB6A30B120则三角形ABC的面积为93
5、在ABC中,已知a3b2B45,解三角形。
六、心得反思
3
f111正弦定理学案
学习目标:
①发现并掌握正弦定理及其证明方法;②会用正弦定理解决三角形中的简单问题。
预习自测
1正弦定理的数学表达式
2一般地把三角形的三个角ABC和它们的对边
叫做三角形的元素已知三角形
的几个元素求其他元素的过程叫做

3.利用正弦定理可以解决两类三角形的问题
1
2
问题引入:1、在任意三角形行中有大边对大角,小边对小角的边角关系是否可以把边、角关系准确量化?
2、在ABC中,角A、B、C的正弦对边分别是abc,你能发现它们之间有什么关系吗?
结论★:

二合作探究:
1、探究一:在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?
2、探究二:能否推广到斜三角形?(先研究锐角三角形,再探究钝角三角形)
3、探究三:你能用其他方法证明吗?
4、正弦定理的变形:5、正弦定理的应用(能解决哪类问题):
4
f三例题讲解
例1已知在ABC中,c10A450C300求ab和B
例2ABC中,c6A450a2求b和BC
例3在ABC中,b3B600c1求a和AC
【变式】ABC中,a2A1350b3求B
思考:通过上面的问题,你对使用正弦定理有什么想法?
四课堂练习:必修5课本P4T1、2五课后作业:
在△ABC中,a1新疆王新敞

b

c
k则k为r
好听全球资料 返回顶部