全球旧事资料 分类
acbcabcabc2
2
2
式成立,原不等式成立。
柯西不等式证法二:设向量
a

a1
a2

a


b

b1
b2

b


约定ai0i12


a
b

a

b
cos

a
b

a

b

ab
2

a
2

b
2
即a1b1a2b2a
b
2a12a22a
2b12b22b
2
当且仅当
a
b
共线即
b1

b2

b

时取等号。
a1a2
a

这种证法则是利用了向量数量积得基本性质:
ab

a

b

ab
2

a
2

b
2,这也是一种很好的解题技巧。
例4、知a、b、c是实数,且abc1求证:13a113b113c143
f数学驿站httpwwwmaths168com
证明:因为a、b、c是实数,且abc1,令

m13a113b113c1



111

m

2

2
13a113b113c1
m
2



2

313a
113b
113c
1
313a

b

c
3
48

m

2

m
2



2
2
13a113b113c148
13a113b113c143
例5、已知x、y、z是正实数,求证:x2y2z2xyz
yzzxxy
2
证明:因为x、y、z是正实数,令

a


xyz
yzx
zxy
byzzxxy

ab
2

a
2

b
2

xyz
yz
yzx
zx
zxy
2
x

y




x2y
z

y2zx

z2x
y
y

z
z

x
x

y
x

y

z2

2
x2y
z

y2zx

z2x
y
x

y

z
x2
y2
z2xyz



yzzxxy
2
例6、设a、b、c为正数,且abc1,求证:
a

1
2


b

12

c

12

100
abc3
证明:令m


a

1a

b

1b

c

1c





13
13
13

f数学驿站httpwwwmaths168com

m
2



2

m

2
a

1a
2

b

1b
2

c

1c
2



13
2


13
2


13

2




1a3
1a
1b13b
13

c

1c

2
2
2

13
1


1a

1b

1c


13
1
a

b

c

1a

1b

1c

2

13
1


3


ba

ab



ca

ac



cb

bc

1192100
3
3
a

1
2


b

12
c

12

100
abc3
fr
好听全球资料 返回顶部