ab6a4b6a4b
变量分离后再用均值定理
xy20
f11三解答题:16解:Ⅰ原式可化为:cos(BC)即:cosAA12022
Ⅱ由余弦定理可知:
232b2c22bccos120b2c2bcbc2bc16bc
∴bc4,S1bcsi
A14si
1201433222217(1)x1
1x22是方程ax25x20的两根由韦达定理可2
12
xxx
1552a222a
(2)ax2-5xa2-10可化为:-2x2-5x30即2x25x-302x-1x30
3x
18解:yx1x0y11101即y1
11x2yx2y2yx2yx2yx19证明:1x2y123232322xyxyxyxyxy
当且仅当2yx即x22y2也就是x2y时取“”xy
a
1a
12a
22a
11mi
322xy
a
12a
a
22
1a11111113120Ⅰa2a
(
N)
1(1)而11
1
1a
11111q数列{1}是以为首项、为公比的等比数列12a
221a
1
1
11
11
Ⅱ111()()1
a
222a
a
22
1111S
(123
)(12233
)22221123
S
()(221123
S
()(2211111123(
1)
122222111123(
1)
122222
1
(
1)111111S
()(2
)
1242232422211
【1()】
(
1)2
(
1)1
2
11
114422212
S
2
(
1)1
1
222
fr