全球旧事资料 分类

3222
解得x11或x23,所以当x1或x3时,fx0当1x3时,fx0,所以fxx3x9x1的单调增区间是1和
32
(3),减区间是(1,3)20见解析.(1)由表知年龄在1525内的有5人,不赞成的有1人,年龄在2535内的有10人,不赞成的有4人,恰有2人不赞成的概率为:1C1C1C2C24246666224C644P24.2222C5C10C5C101025104522575(2)的所有可能取值为:0,1,2,3,
P0P3
2212C6C6C1C2C1C44515415624102344C644P1,,222222C5C1022575C5C10C5C101045104522575
C1C24612444,所以的分布列是:22C5C10104522575

0
p
所以的数学期望E
6.5
1575
13475
22275
3
475
21.【解答】解:(Ⅰ)因为
,所以ρcosθρsi
θ10
f由xρcosθ,yρsi
θ,得xy10…因为
2
消去t得y4x,
2
所以直线l和曲线C的普通方程分别为xy10和y4x.…(Ⅱ)点M的直角坐标为(1,0),点M在直线l上,设直线l的参数方程:(t为参数),A,B对应的参数为t1,t2.
,∴
,…1.
22(1)由题意,gx
11si
x1≥0在1上恒成立,即≥0.si
x2xsi
x2∵θ∈(0,π),∴si
0.故si
x1≥0在1上恒成立,只须
π22mx2xmm(2)由(1),得fxgxmx2l
x.fxgx.xx2∵fxgx在其定义域内为单调函数,
si
11≥0,即si
≥1,只有si
1.结合θ∈(0,π),得
∴mx22xm≥0或者mx22xm≤0在1,+∞)恒成立.2xmx22xm≥0等价于m1x2≥2x,即m≥,1x22x22而2,()max1,∴m≥1.1x1x1xxx2x2mx2xm≤0等价于m1x2≤2x,即m≤在1,+∞)恒成立,1x22x而2∈(0,1,m≤0.综上,m的取值范围是01x1m2e(3)构造Fxfxgxhx,Fxmx2l
x.xxm2e当m≤0时,x1e,mx≤0,2l
x0,所以在1,e上不存在一个x0,使得xxfx0gx0hx0成立.当m0时,Fxm
m22emx22xm2e.因为x1e,所以2e2x≥0,x2xr
好听全球资料 返回顶部