例1三年级一班少先队员参加学校搬砖劳动如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖这个班少先队有几个人?要搬的砖共有多少块?
分析比较两种搬砖法中各个量之间的关系:
每人搬4块,还剩7块砖;每人搬5块,就少2块这两次搬砖,每人相差541(块)。
第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729(块)
每人相差1块,结果总数就相差9块,所以有少先队员9÷19(人)。
共有砖:4×9+7=43(块)。
解:(72)÷(54)9(人)
4×9743(块)或5×9243(块)
答:共有少先队员9人,砖的总数是43块。
如果把例1中的“少2块砖”改为“多1块砖”,你能计算出有多少少先队员,有多少块砖吗?
由本题可见,解这类问题的思路是把盈余数与不足数之和看作采用两种不同搬法产生的总差数,被每人搬砖的差即单位差除,就可得出单位的个数,对这题来说就是搬砖的人数
例2妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果那么妈妈买回的苹果有多少个?计划吃多少天?
分析题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个)从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了。
解:(488)÷(64)
56÷2
28(天)
6×288160(个)或4×28+48160(个)
答:妈妈买回苹果160个,计划吃28天。
f如果条件“每天吃4个,多出48个”不变,另一条件改为“每天吃6个,则还多出8个”,问苹果应该有多少个,计划吃多少天?
分析改题后每天吃的苹果个数没有变,也就是说每天多吃2个条件没变,苹果总数由原来多出48个变为多出8个那么所需苹果总数要相差:48840(个)
解:(488)÷(64)40÷2=20(天)4×20+48128(个)或6×20+8128(个)答:有苹果128个,计划吃20天例3学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?
分析小明每分钟走60米,可提早10分钟到校,即到校后还可多走60×10600(米);如果每分钟走50米,可提早8分钟到校,即到校后还可多走50×8r