全球旧事资料 分类
教育学习K12
课时分层作业六
椭圆的标准方程
建议用时:45分钟基础达标练一、填空题1.圆+=1上一点M到一个焦点的距离为4,则M到另一个焦点的距离为________2516【导学号:95902082】【解析】设椭圆+=1的左、右焦点分别为F1、F2,不妨令MF1=4,2516由MF1+MF2=2a=10,得MF2=10-MF1=10-4=6【答案】62.若a=6,b=35,则椭圆的标准方程是________.【解析】椭圆的焦点在x轴上时,方程为+=1,在y轴上时,方程为+=363536351【答案】+=1或+=136353635
x2
y2
x2
y2
x2
y2
y2
x2
x2
y2
y2
x2
3.已知椭圆的两焦点为F1-20,F220,P为椭圆上的一点,且F1F2是PF1与PF2的等差中项.该椭圆的方程是________【导学号:95902083】【解析】∵PF1+PF2=2F1F2=2×4=8,∴2a=8,∴a=4,∴b=a-c=16-4=12,∴椭圆方程是+=11612【答案】+=11612
222
x2
y2
x2
y2
4.过-32点且与+=1有相同焦点的椭圆方程为________.94【解析】与+=1有相同焦点的椭圆可设为+=1且k<4,将-32代949-k4-k入得:k=-6【答案】+=11510
x2y2
x2y2
x2
y2
x2
y2
115.把椭圆+=1的每个点的横坐标缩短到原来的,纵坐标缩短到原来的,则所得16943曲线方程为________【导学号:95902084】
x2
y2
教育学习K12
f教育学习K12
xy22【解析】原方程化为+=1,所得曲线为x+y=143
【答案】x+y=16.椭圆4x+9y=1的焦点坐标是________.
2222
2
2
xy1111522222【解析】椭圆化为标准形式为+=1,∴a=,b=,∴c=a-b=-=,1149493649
且焦点在x轴上,故为±【答案】±
2
2

5,06

5,06
7.方程-=1表示焦点在x轴上的椭圆,则m的取值范围是________.2mm-12m0,x2y2【解析】将方程化为+=1,由题意得1-m0,2m1-m2m1-m,【答案】
2
x2
y2
1解之得m13
1m13
2
xy→→8.椭圆+=1的焦点为F1,F2,P为椭圆上的一点,已知PF1PF2=0,则△F1PF2的259
面积为________【导学号:95902085】→→222【解析】∵PF1PF2=0,∴PF1⊥PF2∴PF1+PF2=F1F2且PF1+PF2=2a又a=5,b=3,∴c=4,
PF1+PF2=64∴PF1+PF2=10
222
①②
2
②-①,得2PF1PF2=10-64,∴PF1PF2=18,∴△F1PF2的面积为9【答案】9二、解答题9.求适合下列条件的椭圆的标准方程:1焦点在x轴上,且经过点20和点01;2焦点在y轴上,与y轴的一个交点为P0,-10r
好听全球资料 返回顶部