习题91
多元函数的基本概念
x1xy
22
1求下列各函数的定义域:(1)zl
yx;(2)uarccos
2
zxy2
2
。
解1函数的定义域为2函数的定义域为2求下列各极限:(1)
xyyx0x
2
y21
xyz
x2y2x2y20
2xy4;xy00xylim
22x2y2
(2)
ta
xyxy20ylim
limx2y2si
x2y2
(3)limxye
xy
(4)
xy00
x
2
y2
3
解1原式
4xy42xy411limlimxy00xy00xy2xy4xy002xy4xy4lim
2原式
xy20
22
lim
ta
xyy
ta
xyta
xylimxlimlimx122xy20xy20xyxy20xy
3令uxy,原式lim
u1limu0uueue
12ttsi
t1cost12224令txy,则原式limlimlim。322t0t0t03tt3t6习题92偏导数
1求下列函数的偏导数:(1)zsi
xycosxy;(2)z1xy;(3)uarcta
xy
2yz
解1
zycosxy2cosxysi
xyyycosxysi
2xyx
zxcosxy2cosxysi
xyxxcosxysi
2xyy
2
zy1y21xyx
z1
zyl
1xyxyye1xyl
1xyyy1xy
z1z
zxyuzxyuuxyl
xy32z2z2zx1xyyz1xy1xy
1
f(4)设z
y2zzxy,其中u可导,证明x2y2xy3xxy
证
zy2z2y2yxyxxyx3xy3x
2
zy22y2左边xyx2yxyy2xyxxy右边x33x
2求下列函数的
2z2z2z,和x2y2xy
y;x
(2)zsi
2axby
(1)zarcta
z解1x
y2z2xyy22222222xyxyxxy1x1
zy
x2z2xy1r