平面解析几何初步、第八知识块平面解析几何初步、圆锥曲线与方程直线的斜率、第1课时直线的斜率、直线的方程
一、填空题3-为钝角,1.若过点P3-a2+a和Q13a的直线的倾斜角α为钝角,则实数a的取值范围为__________.__________.2a-2解析:0,解析:k=ta
α=0,∴1a2a-2答案:答案:122.2009南通市高三期末调研测试经过点-23,且与直线2x+y-5=0平行的直线2009南通市高三期末调研测试经过点23,南通市高三期末调研测试方程为____________________.方程为____________________.____________________解析:=-22.解析:所求直线方程为y-3=-2x+2.即2x+y+1=0答案:答案:2x+y+1=03.过点23,且在坐标轴上截距的绝对值相等的直线共有________.过点23,且在坐标轴上截距的绝对值相等的直线共有________.23________解析:23点斜率为的一条;23点斜率为点斜率为-的一条;23点和原点的解析:过23点斜率为1的一条;过23点斜率为-1的一条;过23点和原点的一条,一条,因此共3条.答案:答案:3条24、42,0,-2与线段相交,,-24.已知点A-24、B42,直线l过点P0,-2与线段AB相交,的取值范围是________________.则直线l的斜率k的取值范围是________.
解析:数形结合法.=-3解析:数形结合法.由kPA=-3,kPB=1,的取值范围是,-3∪1,+∞3∪1,+∞.如图得直线l的斜率k的取值范围是-∞,-3∪1,+∞.答案:答案:k≥1或k≤-35.若经过点P1-a1+a和Q32a的直线的倾斜角为锐角,则实数a的1-的直线的倾斜角为锐角,取值范围是________.取值范围是________.________解析:由条件知直线的斜率存在,解析:由条件知直线的斜率存在,由公式得k=
a-1因为倾斜角为锐角,0,,因为倾斜角为锐角,所以k0,a+2的取值范围是2.解得a1或a-2,所以a的取值范围是aa1或a-2.
答案:答案:-∞,-2∪1,+∞,-2∪1,+∞2∪1,+01,10,1与线段总有公共点,6.已知两点A01,B10,若直线y=kx+1与线段AB总有公共点,则k的取值范围__________________.是__________________.
用心爱心专心
f1-0解析:1是过定点10的直线的直线,解析:y=kx+1是过定点P-10的直线,kPB=0,kPA==10--1的取值范围是0101.∴k的取值范围是01.答案:答案:010,≠1的图象恒过定点7.江苏省高考命题研究专家原创卷函数y=aa0,a≠1的图象恒过定点r