)进一步熟悉反证法,会用反证法证明简单的问题。(6)了解多面体的概念,了解凸多面体的概念。(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。(9)了解正多面体的概念,了解多面体的欧拉公式。(10)了解球的概念,掌握球的性质,掌握球的表面积和体积公式。
f(11)通过空间图形的各种位置关系间的教学,培养空间想象能力,发展逻辑思维能力,并培养辩证唯物主义观点。
9(B)直线、平面、简单几何体(36课时)平面及其基本性质。平面图形直观图的画法。平行直线。直线和平面平行的判定与性质。直线和平面垂直的判定。三垂线定理及其逆定理。两个平面的位置关系。空间向量及其加法、减法与数乘。空间向量的坐标表示。空间向量的数量积。直线的方向向量。异面直线所成的角。异面直线的公垂线。异面直线的距离。直线和平面垂直的性质。平面的法向量。点到平面的距离。直线和平面所成的角。向量在平面内的射影。平面与平面平行的判定和性质。平行平面间的距离。二面角及其平面角。两个平面垂直的判定和性质。多面体。棱柱。棱锥。正多面体。球。教学目标(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。(2)了解空间两条直线、直线和平面、两个平面的位置关系。(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理;了解三垂线定理及其逆定理。(4)理解空间向量的概念,掌握空间向量的加法、减法和数乘。(5)了解空间向量的基本定理;理解空间向量坐标的概念,掌握空间向量的坐标运算。(6)掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式。(7)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。
f(8)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离);掌握直线和平面垂直的性质定理;掌握两个平面平行的判定定理和性质定理;掌握两个平面垂直的判定定理和性质定理。
(9)了解多面体的概念,了解凸多面体的概念。(10)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。(11)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。(12)了解正多面体的概r