全球旧事资料 分类
推出什么样的结论.操作:1.折出如图所示的折痕PD、PE.
2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的.
生同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.
24
f生甲噢,对于,我知道了.师同学甲,你再做一遍加深一下印象.问题1:你能用文字语言叙述所画图形的性质吗?生角平分线上的点到角的两边的距离相等.问题2:(出示投影片)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:
学生通过讨论作出下列概括:已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.由已知事项推出的事项:PDPE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.师那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影)问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
25
f生讨论已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE∠POD.
由已知推出的事项:点P在∠AOB的平分线上.师这样的话,我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.同学们思考一下,这两个性质有什么联系吗?生这两个性质已知条件和所推出的结论可以互换.师对,这是自己的语言,这一点在数学上叫“互逆性”.下面请同学们思考一个问题.思考:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
26
f2.比例尺为1:20000是什么意思?(学生以小组为单位讨论,教师可深入到学生中,及时引导)讨论结果展示:1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了.1m100cm,所以比例尺为1:20000,其实就是图中1cm表示实际距离200m的意思.作图如下:
第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射r
好听全球资料 返回顶部