全球旧事资料 分类
=3+2-2
+13
=3
-2
+13
=-2
,31-3∴T

14分30-0+220.解:1由直线l:y=x+2与圆x2+y2=b2相切,得=b,即b=22由e=3b22,得2=1-e2=,所以a=3,3a3

x2y2所以椭圆的方程是C1:+=14分322由p21p2,故C2的方程为y24xy2y212易知Q0,0,设R,y1,S,y2,44
222→y1→y2-y1∴QR=,y1,RS=,y2-y1,44
y1(y2-y1)→→由QR=0,得RS+y1y2-y1=0,1616∵y1≠y2,∴y2=-y1+,y12562∴y2=y2+2+32≥21y1→又QS=256256y22+32=64,当且仅当y2=2,即y1=±时等号成立.411y1y1
2
2
2
y212()2+y2=(y2+8)2-64,2244
→2∵y2≥64,∴当y2=64,即y2=±时,QSmi
=85,82→故QS的取值范围是85,+∞.14分
7
f新浪微博高考直通车官方网站:httpwwwgaokaozhito
gchecom
121.解:1fx=ex-x2,则hx=f′x=ex-x,∴h′x=ex-1>0x>0,2∴hx=f′x在0,+∞上递增,∴f′x>f′0=1>0,1∴fx=ex-x2在0,+∞上单调递增,故fx>f0=15分22f′x=ex-2kx,下求使f′x>0x>0恒成立的k的取值范围.若k≤0,显然f′x>0,fx在区间0,+∞上单调递增;记φx=ex-2kx,则φ′x=ex-2k,1当0<k<时,∵ex>e0=1,2k<1,∴φ′x>0,则φx在0,+∞上单调递增,2于是f′x=φx>φ0=1>0,∴fx在0,+∞上单调递增;1当k≥时,φx=ex-2kx在0,l
2k上单调递减,在l
2k,+∞上单调递增,2于是f′x=φx≥φl
2k=el
2k-2kl
2k,1e由el
2k-2kl
2k≥0得2k-2kl
2k≥0,则≤k≤,22e综上,k的取值范围为-∞,.10分213由1知,对于x∈0,+∞,有fx=ex>x2+1,∴e2x>2x2+1,222则l
2x2+1<2x,从而有l
4+1<2
∈N,
222222222于是l
4+1+l
4+1+l
4+1+…+l
4+1<2+2+…+2<2++…123
12
112+211122222=2+21-+…+-=4-<4,故4+14+14+1…4+1<2
123

-1)
-1

e414分
8
fr
好听全球资料 返回顶部