全球旧事资料 分类
椭圆标准方程。169
14、已知中心在原点,焦点在x轴上,离心率为(I)求椭圆方程;
32的椭圆过点(2,22
(II)设不过原点O的直线l:ykxmk0,与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、
k2,满足4kk1k2,求m的值
2
15.同时抛掷两枚相同的骰子每个面上分别刻有1~6个点数,抛掷后,以向上一面的点数为准,试计
f10、解:(1)f4=-2,f3=6,ff2=f00(2)当a≤-1时,a+2=10,得:a=8,不符合;当-1<a<2时,a=10,得:a=10,不符合;
2
a≥2时,2a=10,得a=5,
D,E,则
所以,a=5
11.解:设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A,B,C,
1PA∪B=PA+PB=024+028=052.所以,射中10环或9环的概率为052.2PA∪B∪C∪DPA+PB+PC+PD=024+028+019+016=087.所以,至少射中7环的概率为087.3PD∪E=PD+PE=016+013=029.所以,射中环数小于8环的概率为029.
高二开学考试数学(理科)参考答案:
1、C2、C
2
3、A
4、C5、B
6、B7、B
8、D
9、C
10、A
11、D
13、xRxx10
14、18
15、65
16、②③
17、p0m
13
q0m15
1p真q假,则空集;p假q真,则m153
1故m的取值范围为m153
18、(1)
15.解:将两只骰子编号为1号、2号,同时抛掷,则可能出现的情况有6×6=36种,即
=36.出现6点的情况有1,5,5,1,2,4,4,2,3,3.∴m1=5,
x2y2y2x2x2y21(2)1或1;9254994
(2)频率010150402015频率组距0001000150004000200015(4)P400h600h035略
19、解(1)区间频数2030804030
m5∴概率为P1=1=.
36
出现7点的情况有1,6,6,1,2,5,5,2,3,4,4,3.∴m2=6,
100200
200300300400
400500
m61∴概率为P2=2==.
366
出现8点的情况有2,6,6,2,3,5,5,3,4,4.∴m3=5,∴概率为P3=
500600
m35=.
36
(3)P100h400h065
20、把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3。
从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个(1)事件E摸出的3个球为白球,事件E包含的基本事件有1个,即摸出123号3个球,P(E)120005(2)事件F摸出的3个球为2个黄r
好听全球资料 返回顶部