性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要
f求.16.【分析】由S=S阴影部分图形四边形BDFE=BD×OE,即可求解.【解答】解:令y=0,则:x=±1,令x=0,则y=2,则:OB=1,BD=2,OB=2,S=S阴影部分图形四边形BDFE=BD×OE=2×2=4.故:答案为4.【点评】本题考查的是抛物线性质的综合运用,确定S=S阴影部分图形四边形BDFE是本题的关键.三.解答题(共3小题,满分18分,每小题6分)17.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=21=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】根据分式的混合运算法则把原式化简,根据分式有意义的条件确定x的值,代入计算即可.【解答】解:原式=1×
=1
=
=,由题意得,x≠1,0,1,当x=3时,原式=【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.19.【分析】(1)连接AM,以M为圆心,MA为半径画弧交直线l于N,点N即为所求;(2)连接AB交直线l于点O,点O即为所求;【解答】解:(1)作图如图1所示:
(2)作图如图2所示:作图依据是:两点之间线段最短.
f【点评】本题考查作图复杂作图,两点之间线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四.解答题(共3小题,满分21分,每小题7分)20.【分析】首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应用其公共边构造关系式,进而可求出答案.【解答】解:如图作AE⊥CD交CD的延长线于E.则四边形ABCE是矩形,∴AE=BC=78,AB=CE,在Rt△ACE中,EC=AEta
58°≈125(m)在Rt△AED中,DE=AEta
48°,∴CD=ECDE=AEta
58°AEta
48°=78×1678×111≈38(m),答:甲、乙建筑物的高度AB为125m,DC为38m.
【点评】本题考查的是解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题.21.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数;(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;(3)根据1部对应的人数为4021086=14,即可将条形统计图补充完整;(4)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)∵调查r