全球旧事资料 分类
外延法制备石墨烯
近些年随着微电子工业的迅速发展,硅基集成电路芯片技术正在逼近摩尔定律的物理极限,科学家预言石墨烯有望替代硅材料称为后摩尔时代电子器件发展的重要角色。瑞典皇家科学院在AKGeim和KSNovoselov因为发现石墨烯而获得诺贝尔物理学奖时列出的石墨烯潜在应用产业。石墨烯的奇特的物理性质如极高的载流子迁移率(约250000cm2V1s1)、室温下亚微米尺度的弹道传输特性、反常量子霍尔效应、极优的力学性能(杨氏模量5000Wm1K1,断裂强度125GPa)以及电子自旋输运、超导电性等,使其在纳米电子学和自旋电子学元器件方面拥有非常广阔的发展前景。同时,平面的石墨烯片很容易使用常规技术加工,甚至可能在一层石墨烯单片上直接加工出各种半导体器件和互联线,从而获得具有重大应用价值的拳坛集成电路。材料的制备是实现其功能化应用的基础,大面积高质量石墨烯的制备仍然是困扰科研人员的一大难题。石墨烯虽然可以通过很多种生长方式获得,如机械剥离法,以单晶金属为衬底的CVD法化学氧化还原法等,但是碳化硅外延生长法被普通认为是实现工业化制备和生产石墨烯的最有效途径之一。所谓的外延法,即在一个晶格结构上通过晶格匹配生长出另外一种晶体的方法。与其它制备方法比较,外延法是最有可能获得大面积、高质量石墨烯的制备方法。所获得的石墨烯具有较好的均一性,且与当前的集成电路技术有很好的兼容性。根据所选基底材料的不同,外延生长方法包括碳化硅外延生长法和金属催化外延生长法。金属催化外延生长法是在超高真空条件下将碳氢化合物通入到具有催化活性的过渡金属基底如Pt、Ir、Ru、Cu等表面,通过加热使吸附气体催化脱氢从而制
f得石墨烯。气体在吸附过程中可以长满整个金属基底,并且其生长过程为一个自限过程,即基底吸附气体后不会重复吸收,因此,所制备出的石墨烯多为单层,且可以大面积地制备出均匀的石墨烯。金属外延法基本特点是:所制备的石墨烯大多具有单层结构,能够生长连续、均匀、大面积的单层石墨烯。较之SiC外延法,金属外延石墨烯还具有易于转移的优点(通过化学腐蚀去掉金属基底)。其基本生长机理是:在高真空H2气氛条件下,C和金属的亲和力比Si、N、H和O等元素的高,因而Si和H元素均可被脱除,而溶解在金属表面中的C则在其表面重新析出结晶重构生长出石墨烯。在石墨烯生长过程中,当地一层石墨烯覆盖金属表面大约80时,第二层石墨烯才开始生长,底层石墨烯会与衬底产生强烈的相r
好听全球资料 返回顶部