全球旧事资料 分类
一般行程问题(相遇与追击问题)1行程问题中的三个基本量及其关系:
路程=速度×时间时间=路程÷速度速度=路程÷时间
2行程问题基本类型
(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
1、从甲地到乙地,某人步行比乘公交车多用36小时,已知步行速度为每小时8千米,公交车的速
度为每小时40千米,设甲、乙两地相距x千米,则列方程为

2、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?
3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?
4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时36km,骑自行车的人的速度是每小时108km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?
6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千米时,步行的速度是5千米时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)
7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因
1
f事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。
9、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均
每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程


环行跑道与时钟问题:1、在6点和7点之间,什么时刻时钟的分针和时针重合?
2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,r
好听全球资料 返回顶部