§61
2014高考会这样考
数列的概念及简单表示法
1以数列前几项为背景写数列的通项;2考查由数列的通项公式或递推
关系,求数列的某一项;3考查已知数列的递推关系或前
项和S
求通项a
复习备考要这样做1在通项公式的求解中,要注意归纳、推理思想的应用,寻求数列的项
的规律;2通过S
求a
,要对
=1和
≥2两种情况进行讨论;3灵活掌握由递推关系求通项公式的基本方法.
1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类原则按项数分类按项与项间的大小关系分类类型有穷数列无穷数列递增数列递减数列常数列有界数列按其他标准分类摆动数列满足条件项数有限项数无限a
+1____a
a
+1____a
a
+1=a
其中
∈N
存在正数M,使a
≤M从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列
3数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式如果数列a
的第
项与序号
之间的关系可以用一个公式a
=f
来表示,那么这个公
f式叫做这个数列的通项公式.
S15.已知S
,则a
=S
-S
-1
=1
≥2
难点正本疑点清源1.对数列概念的理解1数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2数列的项与项数:数列的项与项数是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列的函数特征数列是一个定义域为正整数集N或它的有限子集123,,
的特殊函数,数列的通项公式也就是相应的函数解析式,即f
=a
∈N.
1.已知数列a
的前4项为13715,写出数列a
的一个通项公式为__________.答案a
=2
-1
∈N解析∵13715分别加上1,则为24816,易知a
=2
-12.数列a
满足a1=0,a
+1=a
+2
,则a
的通项公式a
=________答案
-1解析由已知,得a
+1-a
=2
,故a
=a1+a2-a1+a3-a2++a
-a
-1=0+2+4++2
-1=
-1.3.若数列a
的前
项和S
=
2-10
=123,,则此数列的通项公式为a
=__________;数列
a
中数值最小的项是第________项.答案2
-113解析当
≥2时,S
-S
-1=2
-11,
=1时也符合,则a
=2
-11,∴
a
=2
2-11
11121=2
-42-,且
∈N,故
=3时,
a
最小.84.设数列a
的前
项和S
=
2,则a8的值为A.15答案A解析∵S
=
2,∴a1=S1=r