近红外光谱NIR分析技术的应用
近红外光谱分析是近20年来发展最为迅速的高新技术之一,该技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。
一、近红外光谱的工作原理
有机物以及部分无机物分子中各种含氢基团在受到近红外线照射时,被激发产生共振,同时吸收一部分光的能量,测量其对光的吸收情况,可以得到极为复杂的红外图谱,这种图谱表示被测物质的特征。不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征。因此,NIR能反映物质的组成和结构信息,从而可以作为获取信息的一种有效载体。
二、近红外光谱仪的应用
NIR分析技术的测量过程分为校正和预测两部分(如图一所示),1校正:①选择校正样品集,②对校正样品集分别测得其光谱数据和理化基础数据,③将光谱数据和基础数据,用适当的化学计量方法建立校正模型;2预测:采集未知样品的光谱数据,与校正模型相对应,计算出样品的组分。由此可知,建立一个准确的校正模型是近红外光谱分析技术应用中的重中之重。
图一
21定标建模
f211为什么要建立近红外校正模型2111建立近红外校正模型的最终目标是获得一个长期稳定的和可预测的模型。2112近红外光谱分析是间接的(第二手)分析方法,所以①需要定标样品集;②利用定标样品集的参比分析数据与近红外光谱建立校正模型;③近红外分析准确度与参比方法数据准确度高度相关;④近红外分析精度一般优于参比方法分析精度。212模型的建立与验证步骤2121扫描样品近红外光谱准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件。利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。2122测定样品成分(定量)按照标准方法(如饲料中的粗蛋白GBT6432、水分GBT6435、粗脂肪GBT6433)准确测定样品集中每个样品的各种待测成分或性质称为参考数据。这些值测定的精确度是近红外光谱运用数学模型进行定量分析精确度的理论极限。2123建立数据对应关系通过2121所得光谱与2122所得不同性质参数的参考数据相关联,使光谱图和其参考数据之间形成一一对应映射的关系,从而建立一个带参考数据的光谱文件。2124剔除异常值2123建立的光谱文件中,样品参考值与光谱有可能由于各种随r