.
f18.(6分)(2015东莞)先化简,再求值:
,其中
.
19.(6分)(2015东莞)如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC5,AD4,ta
∠BAD,求DC的长.
四、解答题(二):本大题3小题,每小题7分,共21分。20.(7分)(2015东莞)老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.
f21.(7分)(2015东莞)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.
22.(7分)(2015东莞)某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润销售价格进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?
f五、解答题(三):本大题3小题,每小题9分,共27分。23.(9分)(2015东莞)如图,反比例函数y(k≠0,x>0)的图象与直线y3x相交于点C,过直线上点A(1,
3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和dMCMD最小,求点M的坐标.
24.(9分)(2015东莞)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DKDP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.
25.(9分)(2015东莞)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt△ADC拼在一起,使斜边
AC完全重合,且顶点B,r