为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。3有限元分析的能够完成的主要任务:最早应用于航空航天领域,主要用来求解线性结构问题,实践证明这是一种非常有效的数值分析方法。而且从理论上也已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够毕竟于精确值。现在用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构线性、流体动力学和耦合场问题的求解。例如由于摩擦接触而产生的热问题,金属成形时由于塑性功而产生的热问
CADCAM技术及应用第4页共3页
f2015年第一学习阶段
题,需要结构场和温度场的有限元分析结果交叉迭代求解,即“热力耦合”的问题。当流体在弯管中流动时,流体压力会使弯管产生变形,而管的变形又反过来影响到流体的流动。这就需要对结构场和流场的有限元分析结果交叉迭代求解,即所谓“流固耦合”的问题。
三、某零件的三维图(1)分析指出该零件由哪些形状特征组成。(2)简述用UG实现下图所示零件三维造型的步骤。答:1形状特征:底座圆盘,凸台,加强筋,沉头孔,倒角,圆角2步骤如下:1)用回转实体做出圆盘2)拉伸实体做出加强筋3)使用圆形阵列,步骤2的加强筋4)用孔工具做出沉头孔5)方法同步骤3,圆形阵列沉头孔6r