全球旧事资料 分类
一、用字母表示数的思想,这是基本的数学思想之一在代数第一册第一章“代数初步知识”中,主要体现了这种思想。例如:设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(ab)2甲数的13与乙数的12差:13a12b二、数形结合的思想“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。实中数学教材中下列内容体现了这种思想。1、数轴上的点与实数的一一对应的关系。2、平面上的点与有序实数对的一一对应的关系。3、函数式与图像之间的关系。4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。6、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。三、转化思想在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,它是数学基本思想方法之一。下列内容体现了这种思想:1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。3、“圆”这一章中,证明圆周角定理进所做的分析:证明弦切角定理的思路:求两圆的切线长的问题。这些转化都是通过辅助线来完成的。4、把三角形或多边形中的某种线段或面积问题化为相似比问题来解决。四、分类思想集合的分类,有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关生活经验等都是通过分类讨论的。五、特殊与一般化思想
f1.“圆”这一章中,证明圆周角定理和弦切角定理时用的是特殊到一般的方法,而相交弦定理及其推论则是一般到特殊的思想运用。2“整式乘除”这一章,首先人数和的运算特例中,抽象概括出幂的一般运算性质。乘法公式的推导则是采用一般到特殊的推导过程。六、类比思想1.不等式的性质,一元一次不等式的解法等内容时多采取与等式的性质,一无一次r
好听全球资料 返回顶部