【量化课堂】CAPM模型和公式
发布于20160818218081457导语:αα和ββ你肯定都听说过吧。那么γγ呢δδεεζζ,ηη,θθ,ιι,ωω那好!我们今天就来告诉你ββ是什么。
作者:肖睿编辑:宏观经济算命师本文由Joi
Qua
t量化课堂推出,难度为进阶上,深度为level2。阅读本文需要掌握和微积分(level0)的知识。
本文是一系列文章中的第三篇。本系列从基础概念入手,推导出CAPM模型。系
列中共有四篇:
1
2
3
4
CAPM模型
5
f概述CAPM,全称CapitalAssetPrici
gModel,译为资本资产定价模型,是由Trey
orSharpeLi
t
erMossi
几人分别提出。搭建于Markowitz的现代资产配置理论(MPT)之上,该模型用简单的数学公式表述了资产的收益率与风险系数ββ以及系统性风险之间的关系。尽管CAPM的假设偏于牵强,结论也常与实验证据相悖,但它一直是金融经济学中重要的理论,为更多先进的模型打好了基础。
模型假设CAPM是一个理论性很强的模型,它所假设的金融市场有一个非常简单的框架,这样不仅简化了分析的难度,也用非常简练的数学公式表达出结论。
CAPM假设,市场上所有的投资者对于风险和收益的评估仅限于对于收益变量的预期值和标准差的分析,而且所有投资者都是完全理智的。并且,市场是完全公开的,所有投资者的信息和机会完全平等,任何人都可以以唯一的无风险利率无限制地贷款或借出。
因此,所有投资者必定在进行资产分配时计算同样的优化问题,并且得到同样的有效前沿和资本市场线(见)。
f为了最大化预期收益并最小化标准差,所有投资者必定选择资本市场线上的一点作为资产配置。也就是说,所有投资者都按一定比例持有现金和市场组合MM。因此,MM是名副其实的“市场组合”,因为整个市场都是按照这个组合来分配资产的。所以MM的波动性和不确定性不单单是市场组合的风险,也是整个市场的风险,叫做系统性风险systematicrisk。
CAPM公式CAPM公式是从以上模型框架推导出的数学表达式,它表达了任何风险资产的收益率和市场组合的收益率之间关系。在这个公式中,任何风险资产的收益率都可以被分为两个部分:无风险收益(利率)和风险收益(ββ收益)。我们先看公式。
f定理(CAPM公式)对于某一风险资产SS(可以把SS想象为一种证券),有
ErSrfβSErMrfErSrfβSErMrf其中:rSrS是组合SS的收益变量;rMrM是市场组合的收益变量rfrf是市场的无风险利率βSβS是组合SS对于市场风险的敏感度,计算公式为
βSCovrSrMVarrMβSCovrSrMVarrM
在公式中,rfrf是r