全球旧事资料 分类
74平行线的性质
第一环节:情境引入活动内容:一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是130°,第二次拐的角∠C是多少度?说明:这是一个实际问题,要求出∠C的度数,需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.活动目的:通过对一个实际问题的解决,引出平行线的性质。教学效果:由于学生对平行线的性质比较熟悉,因此,在学生回忆起这些知识后,能很快解决实际问题。
第二环节:探索与应用活动内容:①画出直线AB的平行线CD,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的?②平行公理:两直线平行同位角相等.③两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?∵a∥b已知,∴∠1=∠2两条直线平行,同位角相等∵∠1=∠3对顶角相等,∴∠2∠3等量代换.师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,给出板书:两条平行线被第三条直线所截,内错角相等.师:下面请同学们自己推导同旁内角是互补的.并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性
f质,形成正确板书.∵a∥b已知∴∠1∠2两直线平行,同位角相等∵∠1+∠4180°邻补角定义∴∠2∠4=180°等量代换即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵a∥b,∴∠1∠2两直线平行,同位角相等.∵a∥b已知,∴∠2=∠3两直线平行,内错角相等.∵a∥b已知,∴∠2∠4=180°.两直线平行,同旁内角互补板书在三条性质对应位置上活动目的:通过对平行线性质的探索,使学生对证明的步骤、格式有更进一步的认识,认识证明的必要性。教学效果:在前面复习引入的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.
第三环节:课堂练习活动内容:①已知平行线AB、CD被直线AE所截1若∠1110°可r
好听全球资料 返回顶部