全球旧事资料 分类
都是正方形,粗实线画出的事一个几何体的三视图,则这个
几何体是()
AB
fA三棱锥B三棱柱C四棱锥D四棱柱【答案】B【解析】试题分析:根据三视图的法则:长对正,高平齐,宽相等.可得几何体如下图所示.
考点:三视图的考查
9.执行右面的程序框图,若输入的abk分别为123,则输出的M
A20B7
3
2
【答案】D
C165
D158
【解析】
试题分析:根据题意由13成立,则循环,即M113a2b3
2又由
22
2
23成立,则循环,即M228a3b8
3又由33成立,则循环,3323
即M3315a8b15
4又由43不成立,则出循环,输出M15.
28838
8
考点:算法的循环结构
fxyxx10.已知抛物线C:y2x的焦点为FA

0
是C上一点,AF5
0
4
,则
0

0
()
A1B2C4D8
【答案】A
【解析】
试题分析:根据抛物线的定义:到焦点的距离等于到准线的距离,又抛物线的准线方程
为:
x


14
,则有:
AF

x0

14
,即有
x0

14

54
x0
,可解得
x0
1.
考点:抛物线的方程和定义
11.已知函数fxax33x21,若fx存在唯一的零点x0,且x00,则a的取
值范围是
(A)2
(B)1
(C)2
(D)1
【答案】C【解析】
试题分析:根据题中函数特征,当a0时,函数fx3x21显然有两个零点且
一正一负当a0时,求导可得:fx3ax26x3xax2,利用导数的正负
与函数单调性的关系可得:x0和x2时函数单调递增x0,2时
a
a
函数单调递减,显然存在负零点当a0时,求导可得:
fx3ax26x3xax2,利用导数的正负与函数单调性的关系可得:
x2和x0时函数单调递减x2,0时函数单调递增,欲要使得函
a
a
数有唯一的零点且为正,则满足:

f

2a


0
,即得:
a


2a
3

3
2a
2
1

0
,可解
f00
得:a24,则a2舍去)a2.
考点:1函数的零点2导数在函数性质中的运用3分类讨论的运用
12.设
x

y
满足约束条件

xx

yy

a1

z

x

ay
的最小值为
7,则
a

(A)5
(B)3
(C)5或3
(D)5或3
【答案】B
【解析】
试题分析:根据题中约束条件可画出可行域如下图所示,两直线交点坐标为:
Aar
好听全球资料 返回顶部