全球旧事资料 分类
)若(x11)(x21)28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.
18为推进我市生态文明建设,某校在美化校园活动中,设计小组想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设ABxm.(1)若花园的面积为216m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和8m,要将这棵树围在花园内(含边界,不考
第2页,共18页
f虑树的粗细),求花园面积S的最大值.
三、解答题(本大题共6小题,共530分)19已知抛物线的顶点是A(2,3),且交y轴于点B(0,5),求此抛物线的解析式.
20如图,直线y43x4与坐标轴分别交于A,B两点,把△AOB绕点A逆时针旋转90°后得到△AO′B′.(1)点A的坐标为______,点B的坐标为______;(2)在方格中直接画出△AO′B′;(3)点O′的坐标是______;点B′的坐标是______.
21如图是圆柱形水管截面图,圆柱形水管内原有积水的水平面宽CD20cm,水深GF2cm.若水面上升2cm(即EG2cm),求此时水面宽AB
第3页,共18页
f222016年某园林绿化公司购回一批香樟树,全部售出后利润率为20.(1)求2016年每棵香樟树的售价与成本的比值.(2)2017年,该公司购入香樟树数量增加的百分数与每棵香樟树成本降低的百分数均为a,经测算,若每棵香樟树售价不变,则总成本将比2016年的总成本减少8万元;若每棵香樟树售价提高百分数也为a,则销售这批香樟树的利润率将达到4a.求a的值及相应的2017年购买香樟树的总成本.
23如图,在Rt△POQ中,OPOQ4,M是PQ中点,把一个三角尺顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与Rt△POQ的两直角边分别交于点A、B.(1)求证:MAMB;(2)探究:在旋转三角尺的过程中,四边形AOBM的面积是否发生变化?为什么?(3)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值.
24已知抛物线的表达式是yax2(1a)x12a(a为不等于0的常数),上述抛物线无论a为何值始终经过定点A和定点B;A为x轴上的点,B为第一象限内的点.(1)请写出A,B两点的坐标:A(______,0);B(______,______);(2)如图1,当抛物线与x轴只有一个公共点时,求a的值;(3)如图2,当a<0时,若上述抛物线顶点是D,与x轴的另一交点为点C,且点A,B,C,D中没有两个点相互重合.求:①△ABC能否是直角三角形,为什么?
第4r
好听全球资料 返回顶部