全球旧事资料 分类
度的平衡(作图问题详见:17函数的图像)3、在高中阶段主要考察三个方面:(1)零点所在区间零点存在性定理,(2)二次方程根分布问题,(3)数形结合解决根的个数问题或求参数的值。其中第(3)个类型常要用到函数零点,方程,与图像交点的转化,请通过例题体会如何利用方程构造出函数,进而通过图像
1
f解决问题的。三、例题精析:例1:直线与函数的图象有三个相异的交点,则的取值范围为.A.B.C.D.思路:考虑数形结合,先做出的图像,,令可解得:或,故在单调递增,在单调递减,函数的极大值为,极小值为,做出草图。而为一条水平线,通过图像可得,介于极大值与极小值之间,则有在三个相异交点。可得:答案:A小炼有话说:作图时可先作常系数函数图象,对于含有参数的函数,先分析参数所扮演的角色,然后数形结合,即可求出参数范围。例2:设函数,若关于的方程在上恰有两个相异实根,则实数的取值范围是_________思路:方程等价于:,即函数与的图像恰有两个交点,分析的单调性并作出草图:令解得:在单调递减,在单调递增,,由图像可得,水平线位于之间时,恰好与有两个不同的交点。答案:小炼有话说:(1)本题中的方程为,在构造函数时,进行了与的分离,此法的好处在于一侧函数图像为一条曲线,而含参数的函数图像由于不含所以为一条水平线,便于上下平移,进行数形结合。由此可得:若关于的函数易于作出图像,则优先进行参变分离。所以在本题中将方程转变为,构造函数并进行数形结合。(2)在作出函数草图时要注意边界值是否能够取到,数形结合时也要注意能否取到边界值。例3:已知函数,若函数有三个零点,则实数的取值范围是()ABCD思路:函数有三个零点,等价于方程有三个不同实数根,进而等价于与图像有三个不同交点,作出的图像,则的正负会导致图像不同,且会影响的位置,所以按进行分类讨论,然后通过图像求出的范围为。
答案:D小炼有话说:(1)本题体现了三类问题之间的联系:即函数的零点方程的根函数图象的交点,运用方程可进行等式的变形进而构造函数进行数形结合,解决这类问题要选择合适的函数,以便于作图,便于求出参数的取值范围为原则。(2)本题所求在图像中扮演两个角色,一方面决定左侧图像直线的倾斜角,另一方面决定水平线的位置与轴的关系,所以在作图时要兼顾这两方面,进行数形结合。例4:已知函数满足,当,若在区间内,r
好听全球资料 返回顶部