全球旧事资料 分类
第5章曲线运动
规律方法总结本章是牛顿运动定律在处理曲线运动问题中的具体应用,本章以曲线运动的两种特殊情况抛体运动和匀速圆周运动为例,研究物体做曲线运动的条件和规律,本章用到的重要解题方法有:运动的合成与分解法、圆周运动中合力求解的正交分解法和临界、极值法等.本章知识的学习多方面渗透了物理思维方法.一、等效思想
f本章中,我们借助运动的合成与分解方法,研究了曲线运动的规律,贯穿着物理学上的等效思维方法,要深刻体会学习,从而达到能够灵活运用的目的.等效方法不但能使问题化繁为简,化难为易,而且能加深我们对物理概念和规律的认识,强化思维,丰富想象,培养我们独立获取知识的能力.运用运动的合成与分解方法来研究曲线运动,可以从以下几方面分析讨论:等效1利用运动的合成与分解研究曲线运动的思维流程;欲知曲线运动规律——→只需分析等效研究两直线运动规律——→得知曲线运动规律.合成2在处理实际问题中应注意:①只有深刻挖掘曲线运动的实际运动效果,才能明确曲线运动应分解为哪两个方向上的直线运动.这是分析处理曲线运动的出发点.②进行等效合成时,要寻找两个分运动时间的联系等时性.这往往是分析处理曲线运动问题的切入点.3处理匀速圆周运动问题的解题思路:首先分析向心力的来源,然后确定物体圆周运动轨道平面、圆心、圆半径,写出与向心力所对应的向心加速度表达式;同时,将题目的待求量如:未知力、未知线速度、未知周期等包含到向心力或向心加速度的表达式中;最后,依据F=ma列方程求解.二、模型构建思想本章用运动的合成与分解的方法研究两种常见的曲线运动模型平抛运动和匀速圆周运动,平抛运动即物体水平抛出以后只受重力作用,在实际情况下,只受重力作用的物体是不存在的,但当物体在所受阻力相对于重力可忽略时,如水平抛出的实心金属球可以看成平抛运动,这种抓住主要因素忽略次要因素的物理思维方法就是模型构建思想.三、极限思想做圆周运动的物体在某一特殊位置往往有一临界极限速度,求出这一临界极限速度,将实际速度与之对比,可以得到一些判断,从而解决问题.如有支撑物的物体在竖直面内做圆周运动时,最高点的临界最小速度为零,而无支撑物的物体在最高点的临界速度由mgv=m得v=gRR专题一平抛运动的特征和解题方法平抛运动是典型的匀变速曲线运动,它的动力学特征是:水平方向:ax=0匀速运动竖直方向:ay=g初速r
好听全球资料 返回顶部