5A版优质实用文档
高三总复习数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。记作a
,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为
的项叫第
项(也叫通项)记作a
;数列的一般形式:a1,a2,a3,……,a
,……,简记作a
。例:判断下列各组元素能否构成数列(1)a311b579220XX年各省参加高考的考生人数。(2)通项公式的定义:如果数列a
的第
项与
之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。例如:①:1,2,3,4,5,…1111②:1,,,,…2345数列①的通项公式是a
(
7,
N),1数列②的通项公式是a
(
N)。
说明:①a
表示数列,a
表示数列中的第
项,a
f
表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。例如,1
2k1a
1
kZ;1
2k③不是每个数列都有通项公式。例如,1,14,141,1414,……(3)数列的函数特征与图象表示:序号:123456项:456789上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集N(或它的有限子集)的函数f
当自变量
从1开始依次取值时对应的一系列函数值
f1f2f3……,f
,…….通常用a
来代替f
,其图象是一群孤立点。
例:画出数列a
2
1的图像(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;
5A版优质实用文档
1
f5A版优质实用文档
②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列?(1)1,2,3,4,5,6,…21098765…3101010…4aaaaa…(5)数列a
的前
项和S
与通项a
的关系:a
1S1S
S
1
≥2
例:已知数列a
的前
项和s
2
23,求数列a
的通项公式练习:1.根据数列前4项,写出它的通项公式:(1)1,3,5,7……;
221321421521,,,;23451111(3),,,。12233445
(2)
(4)9,99,999,9999…(5)7,77,777,7777,…68888888888…
2
1
N3(1)写出a1,a2,a3,a
1,a
2;
2.数列a
中,已知a
2(2)79r