433余角和补角教学设计
磴口一中王洁2015年12月9日
f433余角和补角教学设计
【教学目标】1.在具体情境中了解余角、补角的概念.2.了解同角(等角)的余角与补角的性质,能运用这个性质解决简
单的实际问题.3.学习进行简单的推理,学习有条理的表达.【教学重点与难点】1、教学重点:同角(等角)的余角与补角的性质.2、教学难点:推导“等角的余角与补角的性质”的过程.【教学准备】多媒体课件、纸板、三角尺【教学过程】
一、情境引入、自学辅导1、带领同学们领略意大利的比萨斜塔的壮观景象,并思考:斜塔与地面所成的角度和它与竖直方向所成的角度相加为多少度?(课件演示)2、∠1∠290°,我们把具有这种关系的∠1、∠2称为互余,其中∠1叫做∠2的余角,∠2叫做∠1的余角。请同学们根据老师的演示试着说出余角的定义。(设计意图:通过比萨斜塔的现实情境和剪纸这一实际操作引出余角概念,既调起学生的兴趣,又直观易懂。)余角的定义:如果两个角的和为90°(直角),我们就称这两个角互为余角,简称互余。
f3、思考:斜塔与地面左右两边所成的角度相加为多少度?()
4、∠3∠4180°,我们把具有这种关系的∠3、∠4称为互补,
其中∠3叫做∠4的补角,∠4叫做∠3的补角。
请同学们根据老师的演示试着说出补角的定义。
余补的定义:如果两个角的和为180°(平角),我们就称这两
个角互为补角,简称互补。
5、思考
(1)你怎样理解“互为”两个字?若∠A∠B∠C180°,那么
能说∠A,∠B,∠C互为补角吗?
注意事项1:互余或互补是两角间的关系。
(设计意图:余角的两个注意事项,通过举例、现场操作,让学生说
出错误观点,然后以纠错的方法得出,让学生的印象更为深刻。)
(2)互为余角或互为补角的两个角一定要有公共的顶点或公共
边吗?
注意事项2:两角互余或互补只与度数有关,与位置无关。
6、小试牛刀
1已知∠A的度数为30度,则∠A的余角为_____度∠A的补角
为
度。
2∠Aα°,∠A的余角为
,∠A的补角
为
,一个角的补角比它的余角大
。
注:第二小题中,锐角∠α的余角是(90°∠α),∠α的
补角是(180°∠α),因此,补角比余角大多少可以表示为:
f(180°∠α)(90°∠α)180°∠α90°∠α90°二、合作探究探究一、1、在黑板上贴一个30°的纸板,学生找到它的补角并贴到相应位置,想一想,30°角的补角有几个?它们的大小有怎样的关系?(动手操作)由于两角互余或互补只与度数r